
problems 10/11/15 11:58:37 1 of 1
Problems Index Sun Oct 11 11:58:37 EDT 2015

BOSPRE 2015 PROBLEMS
------ ---- --------

The problems are in approximate order of difficulty,
easiest first.

 problems/asciiart
 A picture is worth a thousand moves.
 Boston Preliminary 2015

 problems/modcalc
 Keeping arithmetic within bounds.
 Boston Preliminary 2015

 problems/vigenere
 Bicycle, Tricycle, wordy N-cycle.
 Boston Preliminary 2015

 problems/mirrors
 Mirror, mirror, in the plane.
 Boston Preliminary 2015

 problems/trends
 Luck or unluck tis common enough.
 Boston Preliminary 2015

 problems/xmole
 Where is the beastie now?
 Boston Preliminary 2015

 problems/latin
 Squares must be complete.
 Boston Preliminary 2015

 problems/reflect
 Composition is such a wonder.
 Boston Preliminary 2015

 problems/reversedraw
 Optimize the machine.
 Boston Preliminary 2015

asciiart.txt 10/11/15 01:41:09 1 of 2
ASCII Art
----- ---

ASCII art consists of a drawing made in an ASCII text
file, such as

 (
 .-----.
 / \
 ’ ’
 | O O |
 . : .
 \ /
 \ - /

You are to write a program that creates ASCII art from
an input command line.

Input

For each of several test cases, a line containing just
the test case name, followed by a single command line
from which the art is to be created.

Assume your printer has a head that begins at the bottom
left of a blank page of ASCII characters and can print a
single ASCII character or move one position. Then each
command line character is interpreted as follows:

 n move up (North) one square
 e move right (East) one square
 s move down (South) one square
 w move left (West) one square
 any print the character
 other
 character

For example, the command line ‘nn*es+’ is interpreted as
move up, move up, print ‘*’, move right, move down,
print ‘+’.

The page is 40 rows (lines) and 56 columns. There are
two special cases. A request to move off the page is
turned into a no-operation. A request to overwrite a
character previously written in a page location is
honored as if the previous character was never written.

Thus a command line that begins with ‘AwsB’ has the same
effect as a command line that begins with just ‘B’,
because the printer starts at the lower left so ‘w’ and
‘s’ become no-operations and ‘B’ overwrites ‘A’.

The command line may not be longer than 100,000 charac-
ters. Input ends with an end of file.

Output

For each test case, first an exact copy of the test case
name line, and then the page with the drawing produced
by the input command line.

However, blank lines at the TOP of the page MUST be
omitted from the output.

asciiart.txt 10/11/15 01:41:09 2 of 2

Sample Input
------ -----

-- SAMPLE 1 --
Aws*n|n|n*e-e-e-e-e-e*s|s|s*w-w-w-w-w-
-- SAMPLE 2 -
nnnn*ne/ne/ne*se\se\se*sw/sw/sw*nw\nw\nweeXeeXsw_
-- SAMPLE 3 -
[see sample.in]
-- SAMPLE 4 -
[see sample.in]

Sample Output
------ ------

-- SAMPLE 1 --

| |
| |

-- SAMPLE 2 -
 *
 / \
 / \
* X X *
 \ _ /
 \ /
 *

-- SAMPLE 3 -
 (
 .-----.
 / \
’ ’
| O O |
. : .
 \ /
 \ - /

-- SAMPLE 4 -
[see sample.test: just ‘*’ at 4 corners with many
 attempts to move off the page and with overwriting.]

File: asciiart.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Sun Oct 11 01:27:20 EDT 2015

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

modcalc.txt 10/02/15 14:55:25 1 of 2
Modulo Calculator
------ ----------

You have been asked to write a calculator for values
that are integers modulo m, for some integer m > 0.
As an initial experiment, you are to perform operations
on these integers and output the results, to see how
the operations behave.

Recall that if 0 <= x and 0 < m, then x modulo m is the
remainder of x divided by m. For C, C++, and JAVA, it
is x % m.

The set { 0, 1, ..., m-1 } is sometimes denoted by [m].
You are to write a program that has input lines like

 [m] + n

which says add n to each i with 0 <= i < m (i.e., each
i in [m]) and output the result modulo m. For example,
the line

 [5] + 1

outputs

 [5] + 1: 1 2 3 4 0

while the line

 [5] * 2

outputs

 [5] * 2: 0 2 4 1 3

Input

Lines as follows:

 Line Output for i, 0 <= i < m

 [m] + n (i + n) modulo m [sum]
 [m] * n (i * n) modulo m [product]
 [m] ** e (i ** e) modulo m [exponential]
 Recall i ** 0 == 1 and i ** 1 == i.
 [m] - The unique j such that 0 <= j < m and
 (i + j) == 0 modulo m.
 [m] / The unique j such that 0 <= j < m and
 (i * j) == 1 modulo m, if such a j
 exists; otherwise output ‘*’.

In the above m, n, and e are integers with

 1 <= m <= 100 0 <= n < m 0 <= e <= 100

Input ends with an end of file.

Output

For each input line, a copy of the input line followed
by a colon and a space and then the outputs for each i,
i == 0 through i == m-1, in order. Output lines for
larger m will be rather long.

Sample Input
------ -----

[5] + 0
[5] + 1
[see sample.in for rest of sample input]

modcalc.txt 10/02/15 14:55:25 2 of 2

Sample Output
------ ------

[5] + 0: 0 1 2 3 4
[5] + 1: 1 2 3 4 0
[5] + 2: 2 3 4 0 1
[5] * 0: 0 0 0 0 0
[5] * 1: 0 1 2 3 4
[5] * 2: 0 2 4 1 3
[5] ** 0: 1 1 1 1 1
[5] ** 1: 0 1 2 3 4
[5] ** 2: 0 1 4 4 1
[5] -: 0 4 3 2 1
[5] /: * 1 3 2 4
[10] ** 9: 0 1 2 3 4 5 6 7 8 9
[10] -: 0 9 8 7 6 5 4 3 2 1
[10] /: * 1 * 7 * * * 3 * 9
[11] + 6: 6 7 8 9 10 0 1 2 3 4 5
[11] + 7: 7 8 9 10 0 1 2 3 4 5 6
[11] * 2: 0 2 4 6 8 10 1 3 5 7 9
[11] * 3: 0 3 6 9 1 4 7 10 2 5 8
[11] * 9: 0 9 7 5 3 1 10 8 6 4 2
[11] * 10: 0 10 9 8 7 6 5 4 3 2 1
[11] ** 3: 0 1 8 5 9 4 7 2 6 3 10
[11] ** 8: 0 1 3 5 9 4 4 9 5 3 1
[11] ** 9: 0 1 6 4 3 9 2 8 7 5 10
[11] ** 99: 0 1 6 4 3 9 2 8 7 5 10
[11] ** 10: 0 1 1 1 1 1 1 1 1 1 1
[11] ** 100: 0 1 1 1 1 1 1 1 1 1 1
[11] -: 0 10 9 8 7 6 5 4 3 2 1
[11] /: * 1 6 4 3 9 2 8 7 5 10
[12] ** 10: 0 1 4 9 4 1 0 1 4 9 4 1
[12] ** 11: 0 1 8 3 4 5 0 7 8 9 4 11
[12] /: * 1 * * * 5 * 7 * * * 11
[20] /: * 1 * 7 * * * 3 * 9 * 11 * 17 * * * 13 * 19
[21] /: * 1 11 * 16 17 * * 8 * 19 2 * 13 * * 4 5 * 10 20
[22] /: * 1 * 15 * 9 * 19 * 5 * * * 17 * 3 * 13 * 7 * 21

NOTES: For 0 <= i < m, it can be shown that there is
 AT MOST ONE j such that 0 <= j < m and i*j == 1
 modulo m. If j exists, i is said to have a
 multiplicative inverse modulo m.

 For a given m, the set of i with a multiplica-
 tive inverse modulo m forms a group with multi-
 plication modulo m as its group operation.
 This group has applications in cryptography.

File: modcalc.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Fri Oct 2 14:54:11 EDT 2015

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

vigenere.txt 10/12/15 03:51:01 1 of 3
Vigenere Cipher
-------- ------

A Vigenere Cipher encrypts by shifting each letter of
a plain text line cyclically to the right within the
alphabet by an amount determined by a key. For example,
‘C’ is ‘A’ shifted right 2 places and ‘B’ is ‘Z’ shifted
right 2 places cyclically (i.e., with wrap-around).

The key is made by repeating a keyword indefinitely.
The n’th letter of a plain text line is shifted
cyclically right by the same amount as the n’th letter
of the key is shifted right from the first letter A of
the alphabet.

So for example, if the keyword is CIPHER, the key is
CIPHERCIPHERCIPHER...., and the letters of a plain text
line are shifted cyclically right by the amounts:

 1st letter shift by 2 (C is A shifted by 2)
 2nd letter shift by 8 (I is A shifted by 8)
 3rd letter shift by 15 (P is A shifted by 15)
 4th letter shift by 7 (H is A shifted by 7)
 5th letter shift by 4 (E is A shifted by 4)
 6th letter shift by 17 (R is A shifted by 17)
 7th letter shift by 2 (C is A shifted by 2)
 8th letter shift by 8 (I is A shifted by 8)
 9th letter shift by 15 (P is A shifted by 15)
 10th letter shift by 7 (H is A shifted by 7)

Thus for example, the line

 This is encrypted by a Vigenere Cipher.

is encrypted using the keyword ‘CIPHER’ to

 Vpxz zu tugiaxilh dg h Mkotuiig Rptygz.

because

 T --> V (shift by 2)
 h --> p (shift by 8)
 i --> x (shift by 15)
 s --> z (shift by 7)
 --> (shift by 4 not used for space)
 i --> z (shift by 17)
 s --> u (shift by 2)
 --> (shift by 8 not used for space)
 e --> t (shift by 15)
 n --> u (shift by 7)
 c --> g (shift by 4)
 r --> i (shift by 17 AND WRAP AROUND)
 etc.

Your spies have discovered an encrypted message, and
also the decrypted plain text of the first line of the
message. They also have discovered that the message
lines were all encrypted using a Vigenere Cipher with
the same keyword, and that keyword has at most 10
letters. You are to find the decrypted message.

vigenere.txt 10/12/15 03:51:01 2 of 3

Input

For each of several test cases, a line containing just
the test case name, followed by the decrypted first
line of the message, followed by the encrypted message
which has one or more lines, followed by a line contain-
ing just ‘*’.

No line is longer than 80 characters and the message
has at most 40 lines.

Input ends with an end of file.

Output

For each test case, first an exact copy of the test case
name line, then the decrypted message, and lastly a line
containing just ‘*’.

The decrypted message is an exact copy of the encrypted
message but with letters changed. Punctuation, spaces,
and line breaks are NOT changed. The case of letters is
preserved (upper case to upper case, lower case to lower
case).

Test cases will be such that decryption is always
possible and is unique.

Sample Input
------ -----

-- SAMPLE 1 --
This is encrypted by a Vigenere Cipher.
Vpxz zu tugiaxilh dg h Mkotuiig Rptygz.
Jq mscma,
 Lfrm fsl igl vprdfmei ioi ewcaijv.
Dgt jfnsh!
*
-- SAMPLE 2 --
AAAAAAAAAAAAAAAA
PASSWORDPASSWORD
PASSWORD
PASS
*
-- SAMPLE 3 --
Twas brillig, and the slithy toves
Kegz szosezo, tel aav ysbkpe mfdkz
Uqj zpzk tel nbdjrl zv aav chuv;
Rtr fzuyf nmxl kpk ufzunhmmy,
Rvj mym thdm ytkpy hlbmytsm.
*

vigenere.txt 10/12/15 03:51:01 3 of 3

Sample Output
------ ------

-- SAMPLE 1 --
This is encrypted by a Vigenere Cipher.
Hi folks,
 Hope you are enjoying the contest.
Bye folks!
*
-- SAMPLE 2 --
AAAAAAAAAAAAAAAA
AAAAAAAA
AAAA
*
-- SAMPLE 3 --
Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.
*

File: vigenere.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Mon Oct 12 03:48:27 EDT 2015

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

mirrors.txt 10/03/15 03:18:39 1 of 3
Mirrors

Rosie the Robot has heard that every isometry of a plane
can be constructed by at most 3 reflections. She’s not
sure what this means, but she’s determined to find out.
Her first thought is to find out what a reflection is.

She finds that a reflection about a straight line L in
the plane is a map taking a point (x,y) in the plane to
a point (x’,y’) such that

 (1) (x’,y’) == (x,y) if and only if (x,y) is on L

 (2) if (x,y) is NOT on L, the straight line between
 (x,y) and (x’,y’) is perpendicular to L and
 L bisects this line

Rosie decides to see how this works by computing (x’,y’)
given (x,y) and L for some examples. The next question
is how to specify L. She decides to do this by giving
two points, (x1,y1) and (x2,y2) on L.

Your task is to write the program Rosie will use to
compute (x’,y’) given (x,y), (x1,y1), (x2,y2).

The following picture visualizes the situation:

 (x,y)
 |
 | (x1,y1) (x2,y2)
 L ----------+---------*-------------------*------
 |
 |
 (x’,y’)

If L is a mirror and you are on the same side as (x,y)
looking at L and seeing (x,y) reflected in the mirror,
then this mirror reflection of (x,y) will appear to be
at (x’,y’).

Input

For each of several test cases, a line containing just
the test case name, followed by a line containing

 x1 y1 x2 y2

giving the points (x1,y1), (x2,y2) that specify the
line L, followed by one or more lines each containing

 x y

giving a point (x,y) that is to be reflected about
L, followed by a line containing just ‘*’.

All numbers are decimals with no more than 3 decimal
places and an absolute value not greater than 10. No
line will be longer than 80 characters. Input ends
with an end of file.

mirrors.txt 10/03/15 03:18:39 2 of 3

Output

For each test case, first an exact copy of the test case
name line, then a line of the form

 x1 y1 x2 y2

that is the same as the test case second input line
except generally with a different number of decimal
places and different spacing, and then for each x y
test case input line one line of the form:

 x y x’ y’

repeating x and y and giving the point (x’,y’) that
is (x,y) reflected about L. Output for the test case
ends with a line containing just ‘*’.

Each number output should take exactly 8 columns and
have exactly 3 decimal places.

Sample Input
------ -----

-- X-AXIS --
0 0 1 0
0 0
0 1
1 0
-1 0
0 -1
*
-- HORIZONTAL LINE --
0 1 1 1
0 0
0 1
1 0
-1 0
0 -1
-4 -10
*
-- 45 DEGREE DIAGONAL --
0 0 1 1
0 0
0 1
1 0
-1 0
0 -1
*
-- ARCTAN 3/4 = 36.86989765 DEGREE DIAGONAL --
0 0 4 3
0 0
0.5 0
-0.333 0.667
0.25 9.125
-7.359 8.004
*

mirrors.txt 10/03/15 03:18:39 3 of 3

Sample Output
------ ------

-- X-AXIS --
 0.000 0.000 1.000 0.000
 0.000 0.000 0.000 0.000
 0.000 1.000 0.000 -1.000
 1.000 0.000 1.000 0.000
 -1.000 0.000 -1.000 0.000
 0.000 -1.000 0.000 1.000
*
-- HORIZONTAL LINE --
 0.000 1.000 1.000 1.000
 0.000 0.000 0.000 2.000
 0.000 1.000 0.000 1.000
 1.000 0.000 1.000 2.000
 -1.000 0.000 -1.000 2.000
 0.000 -1.000 0.000 3.000
 -4.000 -10.000 -4.000 12.000
*
-- 45 DEGREE DIAGONAL --
 0.000 0.000 1.000 1.000
 0.000 0.000 0.000 0.000
 0.000 1.000 1.000 0.000
 1.000 0.000 0.000 1.000
 -1.000 0.000 -0.000 -1.000
 0.000 -1.000 -1.000 -0.000
*
-- ARCTAN 3/4 = 36.86989765 DEGREE DIAGONAL --
 0.000 0.000 4.000 3.000
 0.000 0.000 0.000 0.000
 0.500 0.000 0.140 0.480
 -0.333 0.667 0.547 -0.506
 0.250 9.125 8.830 -2.315
 -7.359 8.004 5.623 -9.306
*

File: mirrors.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Sat Oct 3 03:02:44 EDT 2015

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

trends.txt 08/13/15 06:31:44 1 of 2
Trends

Jack plays a solitary game in which he flips a coin and
gives himself a point on heads but removes a point on
tails. He starts with a score of zero, and keeps score
as he flips coins. You would think that his score would
not remain strictly positive for long, or strictly
negative for long, but you would be wrong. Such long
periods of being strictly positive or strictly negative
are often mis-identified as trends that supposedly prove
the coin is biased.

You have been asked to find the probability of a trend
of length >= m in a sequence of n coin flips. Here a
‘trend’ is defined as a sequence of consecutive flips
such that at the end of each flip Jack’s score is
strictly positive, or, at the end of each flip Jack’s
score is strictly negative. For comparison purposes,
you are also asked to do this for both unbiased and
biased coins.

Input

For each of several test cases, a line containing

 n m p

where n and m are as above and p is the probability of
heads.

 0 < m,n m <= n (m**2)*n <= 50,000,000 0 <= p <= 1

Input ends with an end of file.

Output

For each test case, a single line containing

 n m p ptrend

where n, m, p are copied from the input line and ptrend
is the probability of finding a trend of length >= m in
a sequence of n flips. p and ptrend are to be printed
with exactly 3 decimal places (even if p is input with
fewer decimal places), whereas n and m are integers.

Sample Input
------ -----

10 5 0.5
10 5 0.55
10 8 0.5
10 10 0.5
20 10 0.5
20 10 0.55
20 20 0.5

Sample Output
------ ------

10 5 0.500 0.703
10 5 0.550 0.712
10 8 0.500 0.410
10 10 0.500 0.246
20 10 0.500 0.666
20 10 0.550 0.688
20 20 0.500 0.176

trends.txt 08/13/15 06:31:44 2 of 2

File: trends.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Thu Aug 13 06:26:42 EDT 2015

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

xmole.txt 10/11/15 07:20:15 1 of 3
X-Mole

Es Ophagus lives in the X-plane, which is 2D. She is
having a terrible problem with an X-mole in her X-yard
and needs to find it so she can X it out.

She’s rented an X-mole finder and hooked it up to her
computer. When she presses a button, the finder
generates a random line intersecting her yard, and
tells her which side of the line the X-mole is on.
It presents this information as 3 numbers, a, b, and c,
such that

 a*x + b*y <= c

where (x,y) are the coordinates of the X-mole.

The finder generates a, b, and c at random, tests that
the line a*x + b*y = c intersects the yard and tries
again if not, and then if the line intersects the yard,
outputs a, b, and c if the above equation is true,
and -a, -b, and -c otherwise.

However, if the X-mole is so near the line the finder is
not sure which side it is on, the finder discards the
line and tries another.

Es wants to have some idea after every button press
where the X-mole might be, so after every press she
wants her computer to give her a bounding rectangle
in which the X-mole must be, using information from the
the button press and all previous button presses to make
this bounding rectangle as small as possible. She wants
you to program the computer to output these bounding
rectangles.

The yard is bounded by

 0 <= x <= 1,000
 0 <= y <= 1,000

And, oh yes, Es is X-tra fast and needs an X-tra precise
location so there are X-tra many button presses.

Input

For each of several test cases, a line containing just
the test case name, followed by lines containing

 a b c

for each button press, followed by a line containing
just ‘*’ to indicate the test run is finished.

Input ends with an end of file.

No line will have more than 80 characters.

The a, b, and c numbers are such that

 (a,b) is a unit vector
 - 2,000 <= c <= 2,000
 a, b, c have 9 decimal places

The number of button presses in one test case will
not exceed 1,000,000, and in one file will not exceed
10,000,000. But hey, its really random!

xmole.txt 10/11/15 07:20:15 2 of 3

Output

For each test case, first an exact copy of the input
test case name line, then for each button press that
CHANGES the bounding rectangle, 5 numbers:

 n xmin xmax ymin ymax

where n is the number of the button press (1, 2, ...)
that changed the rectangle, (xmin,ymin) is the lower
left corner of the rectangle, and (xmax,ymax) is the
upper right corner of the rectangle. Each number must
take exactly 10 columns. n is an integer, but the
other numbers must have exactly 3 decimal places.

After all these location lines output a line containing
just ‘*’ to end the test case.

You may assume that the X-mole actually exists in the
yard and that the X-mole finder works perfectly.

Note: Your output can be expanded to include lines for
button presses that did not change the bounding rectan-
gle. E.g., Sample 1 Output below can be expanded to

 1 0.000 1000.000 0.000 1000.000
 2 0.000 1000.000 0.000 1000.000
 3 0.000 141.421 0.000 141.421
 4 0.000 141.421 0.000 141.421
 5 7.071 141.421 0.000 70.711
 6 7.071 10.000 4.142 10.000

by adding a line for button press 2 that copies the
rectangle limits from the previous line, and similarly
for button press 4. The judge will expand your output
before testing for correctness. However, if you produce
already expanded output, it will generate an Output Size
Limit Exceeded error.

Sample Input
------ -----

-- SAMPLE 1 --
 1.000000000 0.000000000 1000.000000000
 0.000000000 1.000000000 1000.000000000
 0.707106781 0.707106781 100.000000000
-0.707106781 -0.707106781 -10.000000000
-0.707106781 0.707106781 0.000000000
 1.000000000 0.000000000 10.000000000
*
-- SAMPLE 2 --
 0.600000000 0.800000000 1000.000000000
-0.800000000 0.600000000 100.000000000
-0.600000000 -0.800000000 -200.000000000
 0.800000000 -0.600000000 -50.000000000
*

Sample Output
------ ------

-- SAMPLE 1 --
 1 0.000 1000.000 0.000 1000.000
 3 0.000 141.421 0.000 141.421
 5 7.071 141.421 0.000 70.711
 6 7.071 10.000 4.142 10.000
*
-- SAMPLE 2 --
 1 0.000 1000.000 0.000 1000.000
 2 0.000 1000.000 0.000 860.000
 3 40.000 1000.000 0.000 860.000
 4 40.000 560.000 190.000 860.000
*

xmole.txt 10/11/15 07:20:15 3 of 3

File: xmole.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Sun Oct 11 07:19:18 EDT 2015

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

latin.txt 10/12/15 03:56:37 1 of 2
Latin Squares
----- -------

A Latin square is an NxN matrix whose elements are the
integers from 1 through N such that

 * Each integer appears exactly once in each column.

 * Each integer appears exactly once in each row.

A partial Latin square is an MxN matrix, with M rows
and N columns, whose elements are integers from 1
through N, such that M < N and

 * Each integer appears AT MOST once in each column.

 * Each integer appears exactly once in each row.

Given any partial Latin square, it is possible to
‘complete’ it: that is, to add rows to its end to make
a Latin square. You are being asked to write a program
to do this.

Input

For each of several test cases, a line containing just
the test case name, followed by a line containing

 M N

followed by M lines containing an MxN partial Latin
square in the form

 L[1,1] L[1,2] ... L[1,N]
 L[2,1] L[2,2] ... L[2,N]

 L[M,1] L[M,2] ... L[M,N]

Here L[r,c] is the element of the partial Latin square
in row r and column c. All numbers are integers.

 0 < M < N <= 1000
 1 <= L[.,.] <= N
 N*N*(N-M) <= 100,000,000

Output

For each test case, first an exact copy of the test case
name line, and then N lines containing the completed
Latin square:

 L[1,1] L[1,2] ... L[1,N]
 L[2,1] L[2,2] ... L[2,N]

 L[N,1] L[N,2] ... L[N,N]

Each element of the Latin square should be printed in 5
columns right adjusted. The first M lines should
contain the partial Latin square that was the test case
input.

There will be many possible correct answers: output
only one.

Sample Input
------ -----

-- SAMPLE 1 --
2 4
1 2 3 4
2 3 4 1
-- SAMPLE 2 --
1 10
1 2 3 4 5 6 7 8 9 10

latin.txt 10/12/15 03:56:37 2 of 2

Sample Output
------ ------

-- SAMPLE 1 --
 1 2 3 4
 2 3 4 1
 3 4 1 2
 4 1 2 3
-- SAMPLE 2 --
 1 2 3 4 5 6 7 8 9 10
 10 9 8 6 7 5 4 3 2 1
 4 10 6 9 8 7 5 1 3 2
 6 5 7 10 1 8 9 2 4 3
 8 3 9 7 10 1 2 6 5 4
 7 1 10 8 2 9 3 4 6 5
 9 4 1 2 3 10 8 5 7 6
 3 6 5 1 4 2 10 9 8 7
 2 7 4 5 9 3 6 10 1 8
 5 8 2 3 6 4 1 7 10 9

Note: What we have called a ‘partial Latin square’ is
 referred to in the literature as a ‘complete
 Latin rectangle’.

File: latin.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Mon Oct 12 03:55:17 EDT 2015

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

reflect.txt 08/17/15 14:07:36 1 of 3
Reflect

Every isometry of N-dimensional space can be represented
as the composition of at most N+1 reflections. You are
given isometries, and must find representations of each
as a composition of at most N+1 reflections.

You are given isometries in the form

 v |---> T + Mv

where v and T are N-vectors and M is an NxN orthogonal
matrix.

You must output equivalent representations of the form

 v |---> R[1]R[2]R[3]...R[K]v

where R[i] is a reflection across the hyperplane

 { v : U[i].v = C[i] },

U[i] is a unit vector, C[i] a real number, and U[i].v is
the scalar product of U[i] and v, so that R[i] is char-
acterized by U[i] and C[i]. It is required that K <=
N+1 and that C[i] not be too large.

An isometry may have many different equivalent represen-
tations as such compositions of reflections, and you are
being asked to output just one.

Input

For each of several test cases, a line containing just
the test case name, followed by a line containing

 N T[1] T[2] ... T[N]

where T = (T[1], T[2], ..., T[N]) is the translation
vector, followed by N lines containing M in the
format

 M[1,1] M[1,2] ... M[1,N]
 M[2,1] M[2,2] ... M[2,N]

 M[N,1] M[N,2] ... M[N,N]

The isometry is

 (T+Mv)[i] = T[i] + sum over j of M[i,j]*v[j]

or in other words, vectors are to be viewed as column
vectors.

N is an integer, and the other numbers are floating
point. 2 <= N <= 20. T[.] has an absolute value not
greater than 10. Because M is an orthogonal matrix,
M[.,.] cannot have an absolute value greater than 1.
The test case name line is not longer than 80 charac-
ters, but other lines may be longer. Input ends with
an end of file.

reflect.txt 08/17/15 14:07:36 2 of 3

Output

For each test case, first an exact copy of the test case
name line, then a line containing just K, and then K
lines, the i’th representing R[i], of the form

 C[i] U[i][1] U[i][2] ... U[i][N]

In this line each number should take exactly 10 columns
and have exactly 6 decimal places. U[i] must be a unit
vector and the absolute value of C[i] must not be
greater than 10*N.

The equivalence required is

 R[1]R[2]...R[K]v = T + Mv

The judge will check that this equation holds to 3 deci-
mal places for v equal to each of the N+1 points:

 (0,0,...,0) [Origin]
 (1,0,...,0) [N Unit Vectors]
 (0,1,...,0)

 (0,0,...,1)

Here the judge is using the fact that if two isometries
agree on N+1 points, and the points span an N-dimension-
al affine subspace, the two isometries are identical on
that subspace. This in turn follows from the fact that
any point P on the straight line through two distinct
points P1 and P2 is uniquely determined by its distances
from P1 and P2.

Solutions are not unique, you are to output any one.
You are NOT required to find a solution with a minimum
number of reflections.

Sample Input
------ -----

-- SAMPLE 1 --
2 0 0
0 -1
1 0
-- SAMPLE 2 --
2 1 0
0 -1
1 0
-- SAMPLE 3 --
2 1 0
0 1
1 0

Sample Output
------ ------

-- SAMPLE 1 --
2
 0.000000 -0.707107 0.707107
 0.000000 0.000000 1.000000
-- SAMPLE 2 --
2
 0.500000 1.000000 0.000000
 0.000000 -0.707107 0.707107
-- SAMPLE 3 --
3
 0.500000 1.000000 0.000000
 0.000000 -0.707107 0.707107
 0.000000 0.000000 1.000000

reflect.txt 08/17/15 14:07:36 3 of 3

File: reflect.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Mon Aug 17 14:04:50 EDT 2015

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

reversedraw.txt 10/10/15 06:38:07 1 of 3
Reverse Draw
------- ----

Sparky, the proprietor of Sparky’s Fat and Fun Eatery
(she first named it ‘Slim and Slick’, but that did not
work out), has acquired a new sign making machine. This
treats the paper-board as having a grid of squares. The
machine has a head that can move over the paper board
and a pen that can be lowered to draw a black line, or
‘stroke’, while the head moves.

The machine has the following commands:

 pendown Put pen down to start stroke.
 penup Put pen up to end stroke.
 move D Move in direction D one square.

where D ::= N | NE | E | SE | S | SW | W | NW

meaning North, Northeast, East, ..., West, Northwest.
Here North is up, South is down, East is right, and
West is left.

The machine always starts and ends with the head in the
lower left corner and its pen up. Its important that a
stroke be drawn all at once, by putting the pen down at
one end of the stroke and then moving along the stroke
to its other end before putting the pen up. Putting the
pen down will draw a dot the size of a grid square at
the current position, and then moving to an adjacent
square with the pen down will not only draw a dot in the
adjacent square, but will also connect the two dots with
a dot-width line.

Sparky finds writing programs for this machine to be
quite a chore, and wants you to help. She wants to
make signs that have line drawings, and not text, but
to control the machine she wants to input a representa-
tion of a sign as a text file like:

 CCC
 CC
 CC
 C
 C
 C
 AAAAAAAA
 AAAA AAAA
 AA AA
 AA AA
 A A
 A A
 A BBB EEE A
 A B B E E A
 A B F B E G E A
 A B F B E G E A
 A B F B E G E A
 A B B E E A
 A B B E E A
 A A
XX
 M K H H D D R Q P P
 M K H H D D R Q P P
 M K H H D D R Q P P
 M K H H D D R Q P P
 M K H H D D R Q P P
 M K H H D D R Q P P
 MM KK HH D D RR QQ PP
 D D
 D D
 DDD DDD
 DD

reversedraw.txt 10/10/15 06:38:07 2 of 3

which defines the ‘‘strokes’ that the machine is to
make. Each stroke is labeled by a different capital
letter. The machine repeatedly goes to one end of a
stroke, executes a pendown, moves to the other end of
the stroke, executes a penup, and then moves to one end
of the next stroke, or if done with all strokes, moves
to its starting position. The machine never omits the
penup at the end of a stroke, even if the next stroke
begins in an adjacent square.

Each stroke has just two ends. The continuation of a
stroke involves going to one of the 8-neighbors of the
previous square in the stroke. Each square in the
stroke will have exactly 1 such neighbor if the square
is a stroke end, and exactly 2 neighbors otherwise.
There are NO strokes that have only one square, so the
start and end of a stroke are different squares.

You are to take the text file and produce a program
for the machine that has as few instructions as pos-
sible, and therefore executes as fast as possible.

However, this task has two parts. The first part deter-
mines the order in which the strokes will be visited,
and which end of each stroke will be the stroke-drawing
start point. The second part computes the instructions
from the output of the first part. In this problem, you
are only responsible for the first part of the task.

Lastly, and quite importantly, Sparky wants to have the
computer already in the machine run your program. But
this computer has only 128 megabytes of memory, of which
some is taken by its operating software. Adding up the
space taken by the operating software, you find there
are 100 megabytes left over for your data. After
considerable thought, you have agreed that this will
suffice if you limit the input to a maximum of 20
strokes.

Input

For each of several test cases, a line containing just
the test case name, followed by the input text followed
by a line containing just ‘*’. The input text lines
contain only single spaces and capital letters, and
define strokes obeying the rules given above.

Input ends with an end of file.

No line is longer than 500 characters and there are no
more than 500 input text lines (not counting the test
case name and ‘*’ lines) in a test case. Input text
lines are not necessarily the same length; they may
or may not be padded at the end with single spaces.

There are no more than 20 separate stokes in a test
case (no more than 20 different capital letters appear
in the input text lines).

Output

For each test case, first an exact copy of the input
test case name line, then lines describing the strokes
to be visited in the order they are to be visited,
and then a line containing just ‘*’

reversedraw.txt 10/10/15 06:38:07 3 of 3

The stroke describing lines have the form

 L: (x1,y1) ---> (x2,y2)

where L is the upper case letter labeling the stroke,
(x1,y1) is the point at which drawing the stroke starts,
and (x2,y2) is the point at which drawing the stroke
stops.

The xy-coordinates are such that (0,0) is at the lower
left of the input text, the place where the machine head
starts and finishes with its pen up.

There is always more than one possible answer (in parti-
cular, making the machine trace its path in reverse
order always works). Output only one answer.

Sample Input
------ -----

-- SAMPLE 1 --
 A
 A A
 A A
 A B A
 A B A
 ABA
 B
 B
 CCCCC
*
-- SAMPLE 2 --
[text for creature as above; or see sample.in]
*

Sample Output
------ ------

-- SAMPLE 1 --
A: (4,3) ---> (6,3)
B: (5,5) ---> (5,1)
C: (7,0) ---> (3,0)
*
-- SAMPLE 2 --
M: (3,4) ---> (1,10)
X: (0,11) ---> (53,11)
P: (52,10) ---> (49,10)
Q: (46,10) ---> (48,4)
R: (45,4) ---> (43,10)
G: (33,17) ---> (33,15)
E: (34,13) ---> (32,13)
D: (30,10) ---> (23,10)
B: (21,13) ---> (19,13)
F: (20,15) ---> (20,17)
C: (27,26) ---> (35,31)
A: (43,12) ---> (10,12)
H: (10,10) ---> (7,10)
K: (4,10) ---> (6,4)
*

File: reversedraw.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Sat Oct 10 06:38:03 EDT 2015

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

