
problems 10/13/14 07:26:33 1 of 1
Problems Index Mon Oct 13 07:26:33 EDT 2014

BOSPRE 2014 PROBLEMS
------ ---- --------

The problems are in approximate order of difficulty,
easiest first.

 problems/binshuffle
 Decks for the virtually inclined.
 Boston Preliminary 2014

 problems/shopsign
 Communication helper.
 Boston Preliminary 2014

 problems/simplefsm
 Recognizing when you are synchronized.
 Boston Preliminary 2014

 problems/gamedraw
 Without a picture, its nothing!
 Boston Preliminary 2014

 problems/thue
 What a strange little language.
 Boston Preliminary 2014

 problems/grid
 Where, oh where, are my whatevers.
 Boston Preliminary 2014

 problems/unitcalc
 What a scientific calculator should be.
 Boston Preliminary 2014

 problems/markov
 What is the future of my state?
 Boston Preliminary 2014

binshuffle.txt 10/15/14 07:25:07 1 of 2
Binary Shuffle
------ -------

You’ve been hired by ‘Giants Gaming Emporium’ to help
shuffle card decks, but, understand, ‘Giant’s’ is a
virtual gaming emporium. So its all in a computer.

The process is simple: you have a (virtual) card deck
and you go to a (virtual) black box and press a
(virtual) button and out pops a binary number, which
instructs you on how to shuffle the deck.

Specifically, you read the bits from left to right, and
if a bit is 0 you take the next card from the BACK of
the deck, but if it is 1 you take the next card from the
FRONT of the deck.

So you can read the binary number ‘1001100’ as

 front back back front front back back

and applied to the deck of 7 Tarot cards:

 21 - World
 20 - Angle
 19 - Sun
 18 - Moon
 17 - Star
 16 - Tower
 15 - Devil

gives the shuffled deck:

 21 - World
 15 - Devil
 16 - Tower
 20 - Angle
 19 - Sun
 17 - Star
 18 - Moon

Special Rules
------- -----

When you run out of cards, stop, even if there are more
binary digits.

If you run out of binary digits, go back to the BEGIN-
NING of the binary number. Its as if you used an
unbounded number of copies of the binary number concate-
nated to each other. E.g., ‘101’ is equivalent to
‘101101101...’.

Input

For each of several test cases, a line containing
just a test case name, followed by a line containing
the binary number, followed by up to 100 lines each
containing the name of one card, followed by a line
containing just ‘.’

Input ends with an end of file.

No line is longer than 80 characters.

Output

For each test case, a copy of the input except that
the order of the cards is their order AFTER the deck
has been shuffled.

binshuffle.txt 10/15/14 07:25:07 2 of 2

Sample Input
------ -----

-- SAMPLE 1 --
1001100
21 - World
20 - Angle
19 - Sun
18 - Moon
17 - Star
16 - Tower
15 - Devil
.

[IMPORTANTLY there are more samples in sample.in]

[BE SURE your program does ALL the samples correctly
 before you submit.]

Sample Output
------ ------

-- SAMPLE 1 --
1001100
21 - World
15 - Devil
16 - Tower
20 - Angle
19 - Sun
17 - Star
18 - Moon
.

[The output for sample.in is in sample.test]

File: binshuffle.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Wed Oct 15 07:23:59 EDT 2014

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2014/10/15 11:25:07 $
 $RCSfile: binshuffle.txt,v $
 $Revision: 1.6 $

shopsign.txt 10/13/14 06:48:29 1 of 3
Shop Sign
---- ----

Sparky, the proprietor of Sparky’s Fat and Fun Eatery
(she first named it ‘Slim and Slick’, but that did not
work out), has trouble making up signs for the front of
her establishment. She has a box of magnetic characters
that she sticks on a sign board out in front. But she
often runs out of some character.

So to help her you are to write a program that given
the contents of a box of characters and several proposed
messages to put on the sign, tells her which messages
will succeed and which will run out of characters.

For example, given the box contents

 AAABCCCDDDEEFGHIILLMMNNOOPQRSSSSTTTTUUVWXYY,,!!

and the following proposed messages:

 HOT DOGS AND BUNS!
 HOT DOGS AND SANDWICHES!

you propose to output:

 HOT DOGS AND BUNS! - succeed
 HOT DOGS AND SANDWICHES! - too few H’s

The maker of magnetic characters only makes letters,
digits, and the following special characters:

 !@#$%&*():;",./?

So, for example, characters such as [and] CANNOT be
in the box or in a proposed message.

Whitespace, of course, is free: there are no spaces
in the box and none are needed.

Sparky does not plan to put more than one message at a
time on the board, so each message is evaluated indepen-
dently of the other messages.

Input

For each of several test cases, a line containing just
the test case name, followed by a line containing the
characters in the box (usually there are duplicates),
followed by any number of lines each containing a
proposed message, followed by a line containing just
‘.’.

Input ends with an end of file.

No line is longer than 80 characters.

Output

For each test case, a copy of the input, with additions
to the proposed message lines of the forms

 ‘ - succeed’ If the message would succeed.
 ‘ - too few X’s’ If the message would fail
 because there are too few X’s
 in the box, where X is some
 character.

Be sure you include the single spaces SURROUNDING the
‘-’ in the additions.

If a message would run out of several different
characters, output any one.

shopsign.txt 10/13/14 06:48:29 2 of 3

Sample Input
------ -----

-- SAMPLE 1 --
AAABCCCDDDEEFGHIILLMMNNOOPQRSSSSTTTTUUVWXYY,,!!
HOT DOGS AND BUNS!
HOT DOGS AND SANDWICHES!
ON VACATION
ON VACATION TILL JULY
ARE YOU HUNGRY?
ALL YOU CAN EAT!
.
-- SAMPLE 2 --
aaBbCcDdeeFfGHhgiiMmNnooPpQqRrSSssTuVvWwYy$.&00123456789
Good Buns $1.00
Hot Dogs $5.00
Buns $1.00 Dogs $2.95
Dogs w Buns $1.45
Dogs and Buns $1.45
Dogs & Buns $1.45
Dogs & Buns $2.99
.
-- SAMPLE 3 --
!@#$%&*():;",./?
!*#
!*#*
($)/@.%
.

Sample Output
------ ------

-- SAMPLE 1 --
AAABCCCDDDEEFGHIILLMMNNOOPQRSSSSTTTTUUVWXYY,,!!
HOT DOGS AND BUNS! - succeed
HOT DOGS AND SANDWICHES! - too few H’s
ON VACATION - succeed
ON VACATION TILL JULY - too few J’s
ARE YOU HUNGRY? - too few R’s
ALL YOU CAN EAT! - succeed
.
-- SAMPLE 2 --
aaBbCcDdeeFfGHhgiiMmNnooPpQqRrSSssTuVvWwYy$.&00123456789
Good Buns $1.00 - succeed
Hot Dogs $5.00 - too few t’s
Buns $1.00 Dogs $2.95 - too few $’s
Dogs w Buns $1.45 - succeed
Dogs and Buns $1.45 - too few n’s
Dogs & Buns $1.45 - succeed
Dogs & Buns $2.99 - too few 9’s
.
-- SAMPLE 3 --
!@#$%&*():;",./?
!*# - succeed
!*#* - too few *’s
($)/@.% - succeed
.

shopsign.txt 10/13/14 06:48:29 3 of 3

Note:

The following would also be correct because the proposed
message is short more than one character:

ON VACATION TILL JULY - too few L’s
ARE YOU HUNGRY? - too few ?’s
Buns $1.00 Dogs $2.95 - too few .’s

File: shopsign.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Mon Oct 13 06:46:29 EDT 2014

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2014/10/13 10:48:29 $
 $RCSfile: shopsign.txt,v $
 $Revision: 1.10 $

simplefsm.txt 10/07/14 00:10:44 1 of 4
Simple FSM
------ ---

Your company wants to implement a very simple Finite
State Machine (FSM) to recognize certain patterns in an
input bit stream. For example, they want to know when
the last 7 bits are ‘1111110’. This bit sequence is
used in a ‘flag’ that separates data blocks, where the
data has been modified so that the flag bit sequence can
never occur within a data block.

You have been asked to write a basic FSM simulator.
Input is a string of bits. States are labeled with
upper case letters or the special characters ‘$’ and
‘*’.

A simple example FSM description is:

 $ $ A
 A * A
 * $ A

which describes an FSM that is in state * when the last
2 bits read are ‘10’.

The 3 lines of this FSM description say:

 when in state $, on reading a 0 go to state $,
 but on reading a 1 go to state A

 when in state A, on reading a 0 go to state *,
 but on reading a 1 go to state A

 when in state *, on reading a 0 go to state $,
 but on reading a 1 go to state A

For each state you are given two successor states, one
to go to if the next bit input is ‘0’, and one to go to
if the next bit input is ‘1’. The FSM starts in state
‘$’, and stops when there are no more bits to read.

If the FSM does what it is supposed to, it will be in
state ‘*’ if and only if the last several bits read are
the pattern sought.

To see how this FSM executes when inputting the binary
string ‘010011001110011110’, write the sequence of
states that the machine is in so that each state is
underneath the next bit to be read:

 0100110011100111100
 $$A*$AA*$AAA*$AAAA*$

This means that the FSM:

 starts in state ‘$’
 goes to state ‘$’ upon reading the first ‘0’
 goes to state ‘A’ upon reading the first ‘1’
 goes to state ‘*’ upon reading the second ‘0’
 goes to state ‘$’ upon reading the third ‘0’

 goes to state ‘A’ upon reading the last ‘1’
 goes to state ‘*’ upon reading the next to last ‘0’
 goes to state ‘$’ upon reading the last ‘0’
 stops when there is no binary digit left to read

Similarly the FSM:

 $ $ A
 A $ B
 B $ C
 C * C
 * $ A

which is intended to recognize the pattern ‘1110’
executes as follows on the same input string:

 0100110011100111100
 $$A$$AB$$ABC*$ABCC*$

simplefsm.txt 10/07/14 00:10:44 2 of 4

Input

For each of several test cases, the following in order:

 a line containing just the test case name
 lines containing the FSM description
 a line containing just ‘.’
 one or more input lines each containing
 a binary string
 a line containing just ‘.’

No line is longer than 80 characters.

Input ends with an end of file.

An FSM description consists of ‘state description lines’
each of the form:

 s z n

which says:

 when in state s, on reading a 0 go to state z,
 but on reading a 1 go to state n

There are 28 FSM states ($, A, B, ..., X, Y, Z, *), but
unused states have no state description line.

Each binary string contains just ‘0’s and ‘1’s and is
processed independently of the other binary strings.

Output

For each test case, first an exact copy of the test
case name line, and then for each binary string input
line two lines:

 (1) an exact copy of the binary string input line
 (2) the state sequence of the FSM execution for
 the input binary string, as described above;
 here the state that the FSM is in just before
 reading a binary digit is placed directly under
 the binary digit

Note there is no whitespace in either of these two
lines.

simplefsm.txt 10/07/14 00:10:44 3 of 4

Sample Input
------ -----

-- RECOGNIZE ‘10’ --
$ $ A
A * A
* $ A
.
0000
1111
0100
010010100
0100110011100111100
.
-- RECOGNIZE ‘1110’ --
$ $ A
A $ B
B $ C
C * C
* $ A
.
1111
1100
1110
1011
101010
010010100
0100110011100111100
0101101110111100
.

Sample Output
------ ------

-- RECOGNIZE ‘10’ --
0000
$$$$$
1111
$AAAA
0100
$$A*$
010010100
$$A*$A*A*$
0100110011100111100
$$A*$AA*$AAA*$AAAA*$
-- RECOGNIZE ‘1110’ --
1111
$ABCC
1100
$AB$$
1110
$ABC*
1011
AAB
101010
AAA
010010100
$$A$$A$A$$
0100110011100111100
$$A$$AB$$ABC*$ABCC*$
0101101110111100
$$AABABC*ABCC*$

simplefsm.txt 10/07/14 00:10:44 4 of 4

Extra Notes (not relevant to solving problem):
----- ----- --- -------- -- ------- -------

The synchronous High Level Data Link Control (HDLC)
protocol for communications via synchronized bit
streams uses ‘01111110’ as a ‘flag’. Successive flags
are used to synchronize clocks and bracket data blocks,
which are altered so they cannot contain flags. This is
done simply by inserting a 0 bit whenever 5 successive 1
bits have occurred in the data, and removing the 0 bit
when ‘111110’ is received in data. The flag contains 6
successive 1’s; 7 successive 1’s is considered to be a
transmission error.

All FSM’s have the same structure except for input/out-
put. As an example of a slightly more complicated in-
put/output structure, let the FSM output a character
when making a transition from one state to another.
So the description line ‘s z n’ becomes ‘s z/Z n/N’
where Z and N are characters output when the next
state becomes z or n, and the output is optional, so
the ‘/Z’ and ‘/N’ are optional. Using this you can
describe an FSM that will insert or remove the 0 bit
in HDLC data.

A more substantial modification replaces the input
string with a tape that can move backward or forward
one position, so instead of outputting a character the
machine writes a new digit at the current position
and then moves the tape either backward or forward one
position. If we also replace the set {0,1} of two
digits by an arbitrary finite set of ‘symbols’, we have
what is called a ‘Turing Machine’.

File: simplefsm.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Tue Oct 7 00:10:16 EDT 2014

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2014/10/07 04:10:44 $
 $RCSfile: simplefsm.txt,v $
 $Revision: 1.11 $

gamedraw.txt 10/13/14 07:15:29 1 of 3
Game Draw
---- ----

You and your friends are making your first computer game
and its fallen to you to draw the pictures, which
consist of simple polygons which are to be filled in
with some color. You are restricting things so the
polygons have only horizontal and vertical edges, the
pixels that must be set have integer coordinates, and
the polygon vertices also have integer coordinates.

Also to make debugging easier you are, for the moment,
representing the picture as a grid of characters on the
screen, where ‘.’ denotes a black pixel, and various
other characters denote colors.

Suppose we start with a 7x14 grid and then draw a poly-
gon with vertices which we label 1, 2, 3, 4, 5, 6, 7,
8, after which we fill in the polygon with the color
‘X’. We get:

 ..2.3....6.7.. ..XXX....XXX..
 XXX....XXX..
 4....5.... ..XXXXXXXXXX..
 XXXXXXXXXX..
 XXXXXXXXXX..
 ..1........8.. ..XXXXXXXXXX..

Then if we add two polygons, the first with vertices
labeled 1, 2, 3, 4 and the second with vertices label-
led 5, 6, 7, 8, and both with color ‘+’, we get

 ..XXX....XXX.. ..XXX....XXX..
 ..XXX....XXX.. ..XXX....XXX..
 ..XXXXXXXXXX.. ..XXXXXXXXXX..
 ..XX12XX67XX.. ..XX++XX++XX..
 ..XX43XX58XX.. ..XX++XX++XX..
 ..XXXXXXXXXX.. ..XXXXXXXXXX..

where these last two polygon’s overlay the first
polygon.

In general the grid is a rectangle of N x M characters,
N lines of M characters each, with (0,0) in the LOWER
LEFT and (M-1,N-1) in the UPPER RIGHT. So the vertices
of the first polygon are

 (2,1) (2,6) (4,6) (4,4) (9,4) (9,6) (11,6) (11,1)

and of the second two polygons are

 (4,3) (5,3) (5,2) (4,2)
and
 (8,2) (8,3) (9,3) (9,2)

Input

For each of several test cases, first a line containing
just a test case name, followed by a line containing:

 N M K

where the grid has N lines of M characters and there are
K polygons, followed by K polygon description lines each
containing:

 C V x1 y1 x2 y2 ... xV yV

where C is the character representing the polygon color,
V is the number of polygon vertices, and the vertices
are (x1,y1), (x2,y2), ..., (xV,yV) IN CLOCKWISE ORDER.

gamedraw.txt 10/13/14 07:15:29 2 of 3

No two edges of the same polygon intersect except at
common vertices. All vertices are inside the grid.
No edge is 0-length. No two consecutive edges are
parallel. No two OVERLAPPING polygons have the same
color.

No line is longer than 80 characters, so there can be
no more than 20 vertices in a polygon.

Input ends with an end of file.

 2 <= N <= 60 2 <= M <= 80 1 <= K <= 40

Output

For each test case, first an exact copy of the test case
name line, and then the test case grid consisting of
N lines each with exactly M characters, none of which
are whitespace.

The grid is initialized to all ‘.’’s before any polygons
are drawn. Then the polygons are drawn IN ORDER, so
each may overlay previously drawn polygons. After all
polygons are drawn the grid is output.

Sample Input
------ -----

-- BOX ---
4 14 1
X 4 2 1 2 2 11 2 11 1
-- BOX WITH EARS ---
6 14 1
X 8 2 1 2 4 3 4 3 2 10 2 10 4 11 4 11 1
-- BOX WITH EYES ---
6 14 3
X 4 2 1 2 4 11 4 11 1
+ 4 4 2 4 3 5 3 5 2
+ 4 8 2 8 3 9 3 9 2
-- BOX WITH EARS, EYES, AND NOSE ---
9 14 3
X 8 2 1 2 7 4 7 4 5 9 5 9 7 11 7 11 1
+ 4 4 3 4 4 9 4 9 3
* 4 6 0 6 4 7 4 7 0

[IMPORTANTLY there are more samples in sample.in]

[BE SURE your program does ALL the samples correctly
 before you submit.]

gamedraw.txt 10/13/14 07:15:29 3 of 3

Sample Output
------ ------

-- BOX ---
..............
..XXXXXXXXXX..
..XXXXXXXXXX..
..............
-- BOX WITH EARS ---
..............
..XX......XX..
..XX......XX..
..XXXXXXXXXX..
..XXXXXXXXXX..
..............
-- BOX WITH EYES ---
..............
..XXXXXXXXXX..
..XX++XX++XX..
..XX++XX++XX..
..XXXXXXXXXX..
..............
-- BOX WITH EARS, EYES, AND NOSE ---
..............
..XXX....XXX..
..XXX....XXX..
..XXXXXXXXXX..
..XX++**++XX..
..XX++**++XX..
..XXXX**XXXX..
..XXXX**XXXX..
......**......

[Output for sample.in is in sample.test]

File: gamedraw.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Tue Oct 7 01:41:22 EDT 2014

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2014/10/13 11:15:29 $
 $RCSfile: gamedraw.txt,v $
 $Revision: 1.18 $

thue.txt 10/15/14 07:27:40 1 of 3
Thue

THUE is an esoteric programming language invented by
John Colagioia in 2000. It is based on a non-determin-
istic rewriting system named after the Norwegian math-
ematician Axel Thue, and has been described as one of
the simplest possible ways to construe constraint-based
programming. It is capable of simulating a Turing
machine.

You have been asked to implement THUE.

Syntax

 symbol ::= graphic ASCII character
 string ::= symbol*
 rule ::= left-hand-side single-space
 ‘::=’ single-space right-hand-side
 end-of-line
 left-hand-side ::= non-empty string other than ‘::=’
 right-hand-side ::= string
 input-rule ::= left-hand-side single-space
 ‘::=’ single-space ‘:::’ end-of-line
 output-rule ::= left-hand-side single-space
 ‘::=’ single-space ‘˜’ string
 end-of-line
 memory ::= string
 input ::= string other than ‘!!!’
 input-line ::= input end-of-line
 program ::=
 rule*
 ‘::=’ end-of-line
 memory end-of-line
 input-line*
 ‘!!!’ end-of-line

Notes:

 ‘Graphic’ means non-white-space, non-control.
 The only non-graphic characters in any line are
 the two single-spaces in rules.
 ‘::=’ denotes a 3-character string as opposed to the
 syntax equation meta-symbol ::=

Execution

Memory is searched and the sequence of rules is searched
until a memory substring and rule are found such that
the memory substring matches exactly the rule left-hand-
side. Then the memory substring is replaced by the rule
right-hand-side. The searches are non-deterministic
(search order does not matter). Execution stops when no
match can be found.

Two kinds of rules are special.

For an input-rule, the right-hand-side ::: is replaced
by the input string from the next input-line. Unless
the last line input was the program ending !!! line,
in which case that line is RE-READ.

For an output-rule, the right-hand-side without its
initial ˜ is output and then replaced in the rule by
the empty string (so the left-hand-side is deleted from
memory). If what would be output is the empty string
(the right-hand-side was ˜ by itself), an end-of-line is
output; otherwise no end-of-line is output.

thue.txt 10/15/14 07:27:40 2 of 3

Input

For each of several test cases, first a line containing
just the test case name, then a program.

Input ends with an end of file.

The maximum line length is 80 characters, and the
maximum number of rules in a program is 100.

Output

For each test case, first a line containing an exact
copy of the test case name input line, then the test
case program output, and LASTLY A SINGLE BLANK LINE.

Input will be such that no output line is longer than
80 characters, memory will never be longer than 100
characters (symbols), output will be unique, output
will end with an end-of-line, and the program
terminating !!! line will be read. Assuming, of
course, that you execute the program correctly.

Sample Input
------ -----

-- HELLO WORLD --
a ::= ˜Hello_World!
** ::= ˜
$$::= :::
::=
$*a*$
!!!
-- INCREMENT BINARY NUMBERS --
INPUT ::= :::
1_ ::= 1++
0_ ::= *1
01++ ::= *10
11++ ::= 1++0
_1++ ::= _*10
0* ::= *0
1* ::= *1
_*0 ::= _Z*
Z ::= ˜0
_*1 ::= _ONE*
ONE ::= ˜1
_*! ::= EOL
EOL ::= ˜
$$::= _INPUT_!
::=
INPUT!
0
1
00
01
10
11
1001111
!!!

thue.txt 10/15/14 07:27:40 3 of 3

Sample Output
------ ------

-- HELLO WORLD --
Hello_World!

-- INCREMENT BINARY NUMBERS --
1
10
01
10
11
100
1010000

[Output ends with a single blank line.]

File: thue.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Wed Oct 15 07:26:53 EDT 2014

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2014/10/15 11:27:40 $
 $RCSfile: thue.txt,v $
 $Revision: 1.5 $

grid.txt 10/05/14 05:56:22 1 of 4
Grid

A ‘grid’ (in the sense described here) is a geometric
data base that stores a set of ‘points’ in a fashion
that makes it easy to look up which points are near
a query point. It is possible to represent geometric
objects as points and use a grid to look up which
objects are near a query point.

The grids we are concerned with are binary trees
in which each node is associated with a rectilinear
region in (cx, cy, cz, r) 4-dimensional space. Here
(cx, cy, cz) is the center of a 3-dimensional sphere
of radius r, so the 4-dimensional point represents
a 3-sphere.

Each child is associated with a subregion of its par-
ent’s region, so that the regions of the two children
of a node are disjoint and their union is the parent
region. The child regions are made by intersecting
the parent region with the halfspaces d <= v and d > v,
for some real number v and coordinate d. Here d may
be cx, cy, cz, or r.

Leaves of the grid contain sets of 4-dimensional points.
In this problem we shall not be concerned with these
sets.

You are given a grid and a set of queries. Each query
consists of a point p and a distance R, and the answer
is the subtree of nodes whose regions contain a 4D
point (cx,cy,cz,r) representing a sphere that is at
most distance R from p, i.e., ||p-(cx,cy,cz)|| <= r+R.

If you think about it you will find that the nodes of
the desired subtree are those whose 4D regions intersect
a 4D cone whose axis is parallel to the r-direction and
whose r = C slice is a 3-sphere of radius R+C and center
p.

Input

For each of several test cases, a line containing
just the test case name, followed a line containing

 cxmin cxmax cymin cymax czmin czmax rmin rmax

followed by lines containing a representation of the
grid, followed by one or more query lines, followed
by a line containing just a ‘*’.

The region of the grid root is

 cxmin < cx <= cxmax
 cymin < cy <= cymax
 czmin < cz <= czmax
 rmin < r <= rmax

The grid representation has the syntax:

 <grid> ::= # | d/v(<grid>,<grid>)
 d ::= cx | cy | cz | r
 v ::= a real number

Here <grid> represents a tree node, # represents a leaf,
the first <grid> in d/v(<grid>,<grid>) represents the
left child, and the second <grid> represents the right
child. The left child region is made by intersecting
the parent region with the halfspace d <= v, and the
right child region is made by intersecting with d > v.
Whitespace, including line feeds, is allowed only after
‘(’ and ‘,’.

grid.txt 10/05/14 05:56:22 2 of 4

A query is represented by a single line containing

 px py pz R

where (px, py, pz) is the query point and R the query
distance.

No grid will have more than 127 nodes. There will be
no more than 1000 queries among all the test cases
taken together. For each test case and query:

 cxmin < cxmax
 cymin < cymax
 czmin < czmax
 0 <= rmin < rmax
 0 <= R

All input numbers are in the range [-1000, +1000] and
have at most 3 decimal places.

Input ends with an end of file.

Output

For each test case, first a line containing an exact
copy of the test case name line, and then for each query
p, R, exactly one line (possibly very long) containing
a representation of the subtree of grid nodes whose
regions contain points that represent spheres within
distance R of point p. This subtree is represented by
the syntax:

 <subtree> ::= # | * | (<subtree>,<subtree>)

and is a pruned version of the grid made by omitting
the ‘d/v’s and representing omitted children by ‘*’.
Also there may not be ANY whitespace within the query
output line.

The input will be such that the output is unambiguous.

grid.txt 10/05/14 05:56:22 3 of 4

Sample Input
------ -----

-- SAMPLE 1 --
-10 10 -10 10 -10 10 0 2
cx/0(cx/-5(#,#),cx/5(#,#))
-10 0 0 0
-5 0 0 0
-2.5 0 0 0
-1 0 0 0
+1 0 0 0
+2.5 0 0 0
+5 0 0 0
+10 0 0 0
*
-- SAMPLE 2 --
-10 10 -10 10 -10 10 0 2
cx/5(cy/5(cz/5(r/1(#,#),
 r/1(#,#)),
 cz/5(r/1(#,#),
 r/1(#,#))),
 cy/5(cz/5(r/1(#,#),
 r/1(#,#)),
 cz/5(r/1(#,#),
 r/1(#,#))))
-13 -5 5 0.1
-12 -5 5 0.1
1 -5 5 0.1
1 -5 3 0.1
1 1 1 3.1
1 1 1 2.1
*

Sample Output
------ ------

-- SAMPLE 1 --
((#,*),*)
((#,#),*)
((*,#),*)
((*,#),(#,*))
((*,#),(#,*))
(*,(#,*))
(*,(#,#))
(*,(*,#))
-- SAMPLE 2 --
*
((((*,#),(*,#)),*),*)
((((#,#),(#,#)),*),*)
((((#,#),(*,#)),*),*)
((((#,#),(#,#)),((#,#),*)),(((#,#),*),*))
((((#,#),(*,#)),((*,#),*)),(((*,#),*),*))

Remarks

In real applications, the spheres bound more complex
objects which are inspected further once it is determin-
ed that their bounding spheres are close enough to the
observation point. Also, p and part of R may themselves
represent a sphere bounding a complex object.

Lastly, in a real application, the algorithm to select
grid nodes in the subtree may be simplified to be faster
at the cost of including some nodes that do not belong.
But you must NOT simplify for this problem, which
requires precise computation of intersections.

grid.txt 10/05/14 05:56:22 4 of 4

Reference

Algorithms & Data Structures, with applications to
graphics and geometry, Jurg Nievergelt and Klaus H.
Hinrichs, 23.5.

File: grid.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Sun Oct 5 05:53:46 EDT 2014

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2014/10/05 09:56:22 $
 $RCSfile: grid.txt,v $
 $Revision: 1.9 $

unitcalc.txt 10/15/14 07:29:46 1 of 3
Unit Calculator
---- ----------

You have been asked to write a program that will perform
context dependent unit conversions. For example, if
you are selling apples and oranges and want to know
how many oranges you must sell to generate as much
revenue as selling 1 apple, you could give the program:

 12 apples = 4.95 dollars
 12 oranges = 3.25 dollars
 1 apples = ? oranges

to which the answer is:

 1 apples = 1.523 oranges

Similarly if you want to know how many kilowatts of
energy it takes to heat 1 gallon of water 60 degrees
Fahrenheit in 1 minute, you could give the program:

 1 BTUs = 1 degrees-F pounds
 1 BTUs = 1055 joules
 1 joules = 1 watts seconds
 1000 watts = 1 kilowatts
 60 seconds = 1 minutes
 1 gallons = 8.3454 pounds
 60 degrees-F gallons = ? kilowatts minutes

to which the answer is

 60 degrees-F gallons = 8.804 kilowatts minutes

Notice the first problem makes apples and oranges
equivalent to dollars, which only works in a particular
context. The second problem makes 1 gallon equal to
8.3454 pounds, and 1 BTU equal to 1 degrees-F per
pound, and these equations work only for water. So
our problems are context sensitive.

To simplify things we always use the plural for unit
names, thus writing such syntactic barbarisms as
‘1 apples’. The lexemes are

 <number> ::= any number readable as floating point
 <unit-name> ::= sequence of graphic characters
 that begins with a letter
 <special> ::= / | = | ? | .

A ‘graphic’ character is a character that prints a mark.
Lexemes are always separated from each other by white-
space.

There is one statement per input line. The statement
syntax is:

 <units> ::= <unit-name>* <divisor>*
 <divisor> ::= / <unit-name>
 <quantity> ::= <number> <units>
 <equivalence> ::= <quantity> = <quantity>
 <query> ::= <quantity> = ? <units>
 <end> ::= .
 <statement> ::= <equivalence> | <query> | <end>

Input

For each of several test cases, a line containing just a
test case name, followed by lines containing equiva-
lences used in the calculation, followed by lines con-
taining queries, followed by a line containing just ‘.’.
Note that there can be more than one query, and lines
and unit names can be long.

unitcalc.txt 10/15/14 07:29:46 2 of 3

All input is lexically and syntactically legal. All
numbers input are > 0.

There are at most 100 distinct <unit-name>s in a test
case and at most 100 <equivalence>s. In all test cases
there will be at most 1,000 <query>s.

Input ends with an end of file.

Output

For each test case, first a line containing an exact
copy of the test case name line, and for each input
query line an exact copy of that line but with the ?
replaced by a number with exactly 3 decimal places.
Input will be such that every query will have a unique
answer.

Sample Input
------ -----

-- APPLES AND ORANGES --
12 apples = 4.95 dollars
12 oranges = 3.25 dollars
1 apples = ? oranges
.
-- HEATING WATER --
1 BTUs = 1 degrees-F pounds
1 BTUs = 1055 joules
1 joules = 1 watts seconds
1000 watts = 1 kilowatts
60 seconds = 1 minutes
1 gallons = 8.3454 pounds
1 BTUs = ? kilowatts minutes
60 degrees-F gallons = ? BTUs
60 degrees-F gallons = ? kilowatts minutes
.
-- STRANGE --
5 / X = 7
3 X = ?
.

unitcalc.txt 10/15/14 07:29:46 3 of 3

Sample Output
------ ------

-- APPLES AND ORANGES --
1 apples = 1.523 oranges
-- HEATING WATER --
1 BTUs = 0.018 kilowatts minutes
60 degrees-F gallons = 500.724 BTUs
60 degrees-F gallons = 8.804 kilowatts minutes
-- STRANGE --
3 X = 2.143

File: unitcalc.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Wed Oct 15 07:28:20 EDT 2014

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2014/10/15 11:29:46 $
 $RCSfile: unitcalc.txt,v $
 $Revision: 1.10 $

markov.txt 10/15/14 07:30:37 1 of 3
Markov Recurrence
------ ----------

A finite Markov Chain is a finite set of N states S1,
S2, ..., SN and a matrix p[i,j] of probabilities,
1 <= i,j <= N, such that if the ‘system’ is in state Si,
the next state of the system will be Sj with probability
p[i,j]. It is required that

 0 <= p[i,j] <= 1
 sum (1 <= j <= N) p[i,j] = 1

Thus the ‘transition’ of the system from Si to Sj has
probability p[i,j].

If a state sequence starts from Si it may or may not
return to Si; such a return is called a ‘recurrence’.
Let f[i,t] be the probability that the sequence returns
to Si for the FIRST time after the t’th transition (so
f[i,1] == p[i,i]). Here t => 1 is thought of as ‘time’.
Then

 f[i] = sum (1 <= t) f[i,t]

is the probability that the system returns to Si at
some future time (the probability that Si ever recurs).

A state Si is said to be persistent if f[i] == 1, and to
be transient if f[i] < 1.

A state Si is said to be no-return if f[i] == 0.

A state Si is said to be periodic if it is NOT no-return
and there is an integer s > 1 such that f[i,t] == 0 if
t mod s != 0. The largest such s is the period of Si.

A state Si that is NEITHER no-return or periodic is said
to be aperiodic.

You have been asked to compute f[i] for the states Si of
a Markov Chain and determine if Si is transient or per-
sistent and if Si is no-return, periodic, or aperiodic.
In the periodic case you are to determine the period.

Input

For each of several test cases, first a line containing
just the test case name, then a line containing just N,
and then N lines containing the probabilities in the
layout

 p[1,1] p[1,2] ... p[1,N]
 p[2,1] p[2,2] ... p[2,N]

 p[N,1] p[N,2] ... p[N,N]

1 <= N <= 100, 0 <= p[i,j] <= 1, and for each i,
sum p[i,j] over all j = 1.

Input probabilities may have many decimal places and
the lines containing them may be long. Double precision
floating point will suffice for input and computation.

Input ends with an end of file.

Output

For each test case, the first a line containing an exact
copy of the test case name input line, then N lines each
with the format:

 f[#] = #.### X Y

markov.txt 10/15/14 07:30:37 2 of 3

where # denotes a digit, X is either ‘persistent’ or
‘transient’, Y is either ‘no-return’, ‘period #’ or
‘aperiodic’.

The only whitespace in the output are 4 single spaces,
2 surrounding the =, 1 before X, and 1 before Y. The
N lines are in order of increasing f[#] index, i.e.,
f[1], f[2], ..., f[N].

The input will be such that a state i will be persistent
if and only if f[i] >= 0.9995, and there will be no
ambiguous cases.

WARNING: f[i] < 0.0005 does NOT mean the state is
no-return. You must use a calculation not involving
f[i] to determine whether a state is no-return (use
your period calculation).

Sample Input
------ -----

-- SAMPLE 1 --
2
0 1
1 0
-- SAMPLE 2 --
2
0.5 0.5
0 1
-- SAMPLE 3 --
2
0 1
0 1

Sample Output
------ ------

-- SAMPLE 1 --
f[1] = 1.000 persistent period 2
f[2] = 1.000 persistent period 2
-- SAMPLE 2 --
f[1] = 0.500 transient aperiodic
f[2] = 1.000 persistent aperiodic
-- SAMPLE 3 --
f[1] = 0.000 transient no-return
f[2] = 1.000 persistent aperiodic

Note

For finite markov chains, persistent aperiodic states
are called ‘ergodic’. For infinite markov chains,
persistent aperiodic states with finite expected time
of return are called ‘ergodic’, but there are also
persistent aperiodic states with infinite expected time
of return which called ‘null states’.

markov.txt 10/15/14 07:30:37 3 of 3

File: markov.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Wed Oct 15 07:30:03 EDT 2014

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2014/10/15 11:30:37 $
 $RCSfile: markov.txt,v $
 $Revision: 1.9 $

