probl ens

10/ 15/ 13 22:14:50

1 of 1

Problems Index Tue Oct 15 22:14:49 EDT 2013

BOSPRE 2013 PROBLEMS

The problems are in approximate order of difficulty,
easiest first.

problems/soundex
If it sounds alike, it is alike.
Boston Preliminary 2013

problems/transition
Population pop.
Boston Preliminary 2013

problems/pulleys
How long is your belt?
Boston Preliminary 2013

problems/crates
Nesting is not just for the birds.
Boston Preliminary 2013

problems/onlinestring
Hop, skip, and jump your way through.
Boston Preliminary 2013

problems/localcolor
Myopia is tough.
Boston Preliminary 2013

problems/eulerian
Bigger cycles are better cycles.
Boston Preliminary 2013

problems/polyellipse
It takes two to tangle.
Boston Preliminary 2013

soundex. t xt

10/07/13 11:19:23 1 of

American SOUNDEX

SOUNDEX is a system of translating words into crude
phonetic approximations that may be used to suggest
spellings for misspelled words. For example, ‘Tymczak’
and ‘Timsack’ both translate to ‘T522’, and so if a

writer writes ‘Timsack’ and that is not in the

dictionary, but ‘Tymczak’ is, a spell checker can
suggest ‘Tymczak’ as a possible correct spelling.

The SOUNDEX rules for translating a word are as follows:

(1) Apply a translation table to translate every
character to a digit, -, or *.

(2) Delete all occurrences of *.

(3) Delete any digit that follows an identical digit.
(Alternatively, replace any string of identical
digits by a single digit.)

(4) Delete all occurrences of -.

(5) If the first letter of the original word translated
to a digit, replace that digit, which now begins
the translated word, by the letter; otherwise pre-
pend the letter to the translated word (prepend is
to ‘beginning’ as append is to ‘end’).

(6) The translated word now consists of a letter
followed by zero or more digits. Discard all digits
but the first three. If there are less than 3
digits, append ‘0’s until there are 3 digits.

The translation table used for American English is

a, e, i, 0, u, and y each translate to -
h and w each translate to *

b, f, p, and v each translate to 1

¢, 0, Kk, q, s, X, and z each translate to 2
d and t each translate to 3

| translates to 4

m and n each translate to 5

r translates to 6

If you study these rules, you will find that sequences

of similar consonants are translated to a single digit
unless they are separated by vowels, vowels are other-
wise ignored, and ‘h’ and ‘w’ are completely ignored.

In addition, the first character is kept, and only the

first three dissimilar or vowel separated consonant
sequences are kept.

For each of several test cases, one line containing just
the word to be translated. To keep things simple, each
word contains only lower case letters and has at most
25 letters.

Input ends with an end of file.

For each test case, one line of the form

WORD-TO-BE-TRANSLATED => TRANSLATED-WORD

soundex. t xt

10/07/13 11:19:23 2 of

Sample Input

robert
rupert
rubin
ashcraft
ashcroft
tymczak
timsack
pfister
how

Sample Output

robert =>r163
rupert =>rl163
rubin =>r150
ashcraft => a261
ashcroft => a261
tymczak => t522
timsack => t522
pfister => p236
how => h000

Tips:

Input consists of lines read from the standard input.
Input ends when an end-of-file is read from the standard
input. Output consists of lines written to the standard
output. For example input/output code see

“/demos/solutions/reverser/reverser.EXT

where EXT is c, cc, or java.

You may find it beneficial to add code so that if your
program is being run in debug mode it outputs

WORD => TWORD1 => TWORD2 => ... => TWORDG6

where WORD is the original word, TWORDL1 the word after
the first translation step, TWORD?2 the word after the
second step, and TWORDG6 the word after the 6'th and
final step. Some examples from ‘make debug’ using the
judge’s solution are

robert => 6-1-63 => 6-1-63 => 6-1-63 => 6163
=>r163 =>r163

rubin => 6-1-5 => 6-1-5 => 6-1-5 => 615
=>r15 =>r150

ashcraft => -2*26-13 => -226-13 => -26-13 => 2613
=>a2613 => a261

tymczak => 3-522-2 => 3-522-2 => 3-52-2 => 3522
=> 1522 => t522

pfister => 11-23-6 => 11-23-6 => 1-23-6 => 1236
=> p236 => p236

how => **=>-=>-=>
=> h => h000

where we added some extra line feeds to conform to this
current document’s 56 column width limit.

soundex. t xt 10/ 07/ 13

11:19: 23

3 of 3

Reference

http://en.wikipedia.org/wiki/Soundex

File: soundex.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Mon Oct 7 11:18:31 EDT 2013

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Author: walton $

$Date: 2013/10/07 15:19:23 $
$RCSfile: soundex.txt,v $
$Revision: 1.6 $

transition.txt 10/ 15/ 13

15: 48: 46 1 of

Demographic Transition

Almost all countries have undergone or are undergoing a
‘demographic transition’ in which the population
explodes because improved public health measures and
medicine cause the death rate to plummet but the birth
rate remains high for a time before dropping to match
the death rate. You have been asked to compute the
approximate start and stop years of a country’s demo-
graphic transition, and the multiplier of the transi-

tion, which is defined as the population at the stop

year divided by the population at the start year.

To compute the start and stop years, take the yearly
growth averaged over every 10 year period, define
periods with average growth of at least 1% as ‘high
growth’, take the first year of the first high growth
period as the start year and the LAST(!) year of the
last high growth period as the stop year.

A country can have only one demographic transition (at
least in historic times) which begins when improved

public health measures and medicine cause the death rate
to go down. But not all periods within a demographic
transition are high growth, and in fact, population may
decrease within the transition period due to famine or

war.

To be a bit more precise, if PA is the population for
year YA, the first of the 10 year period, and PB the
population for year YB = YA + 10, then the period is
high growth if and only if (1.01)**10 <= PB/PA. Note
YA and YB are the endpoints of a sequence of 11 (not
10) year/population pair values, and YB is the LAST
year of the high growth period.

However, it is uncertain whether 10 years is the right
period duration and whether 1% is the right growth level
for defining ‘high growth periods’, so these need to be
parameters that can be changed.

For each of several test cases, first a line containing
just the test case name (which typically is the country
name), and then one line containing the raw data and
having the format

Y NP1P2P3.. PN

This specifies the populations P1, ..., PN for N years
beginning with year Y (thus the last yearis Y + N - 1).
This line is followed by one or more lines of the form

GD

where a high growth period is defined as a period of
duration D consecutive years with effective yearly
growth G %. The lines of this last format are followed
by a line containing just the character *'.

To be precise, if P[YA] denotes the population at year
YA, a D year period beginning at year YA and ending at
year YA + D is high growth if and only if (1+G/100)**D
<= P[YA+D]/P[YA].

The input is such that

0<=Y<=Y+N-1<=3,000

2 <=N<= 3,000

1<=D<=N-1

0<=G<=100

0 <=Pi<=2,000,000fori=1,2,..., N

transition.txt

10/ 15/ 13 15:48: 46 2 of

Populations are actual populations in units of 1,000
of the country named in the test case name line.

All input numbers are integers except G, which is
floating point. The line containing the raw population
data may be very long, but other lines will be at most
80 characters.

Input ends with an end of file.

Output

For each test case, first a copy of the test case name
input line, then a line containing

data is for years Y1 through Y2
where

Y1 equals Y, the first year of raw input data
Y2 equals Y + N - 1, the last year of raw input data

Lastly for each input line of the form
GD
one output line of the form

M: YA/PA through YB/PB: G% for D years

where

M is the ratio PB / PA,
with exactly 2 decimal places

YA is the start year, the first year of the first
high growth period

PA is the population at the start year

YB is the stop year, the last year of the last
high growth period

PB is the population at the stop year

D, G are from the input line,
but G is printed with exactly 2 decimal places

However, if there were no high growth periods, output
instead a line of the form

no transition found: G% for D years

Note that you may get YA == Y1, which suggests that the
demographic transition actually starts before the given
data, or YB == Y2, which suggests that the transition is
not yet finished.

transition.txt

10/ 15/ 13 15:48: 46

3 of 5

Sample Input

-- France --

1820 190 31250 31460 31685 [... see sample.in]
1510

1.210

1.010

0.8 10

0.7 10

0.6 20

0.520

*

-- Germany --

1820 190 24905 25260 25620 [... see sample.in]
1510

1.210

1.010

0.8 10

0.7 10

0.6 20

0.520

*

Sample Output

-- France --

data is for years 1820 through 2009

no transition found: 1.50% for 10 years

no transition found: 1.20% for 10 years

1.34: 1943/39000 through 1971/52432: 1.00% for 10 years
1.37: 1942/39400 through 1975/53955: 0.80% for 10 years
1.37: 1941/39600 through 1977/54378: 0.70% for 10 years
1.38: 1940/41000 through 1986/56725: 0.60% for 20 years
2.06: 1820/31250 through 2009/64420: 0.50% for 20 years
-- Germany --

data is for years 1820 through 2009

1.21: 1894/49703 through 1907/60341: 1.50% for 10 years
1.44: 1887/46001 through 1915/66230: 1.20% for 10 years
2.65: 1820/24905 through 1916/66076: 1.00% for 10 years
2.83: 1820/24905 through 1956/70603: 0.80% for 10 years
3.12: 1820/24905 through 1970/77783: 0.70% for 10 years
3.17: 1820/24905 through 1974/78966: 0.60% for 20 years
3.14: 1820/24905 through 1976/78299: 0.50% for 20 years

Tips:

Input consists of lines read from the standard input.
Input ends when an end-of-file is read from the standard
input. Output consists of lines written to the standard
output. For example input/output code see

“/demos/solutions/summer/summer.EXT

where EXT is c, cc, or java.

transition.txt

10/ 15/ 13 15:48: 46 4 of

If you want to you can compute the growth g of any D
year period using the formulae

double m = (double) P[YA+D] / P[YA];
double g=100*(exp(log(m)/D)-1);

Some output from running ‘make debug’ on the judge’s
solution using this formula is

-- France --

data is for years 1820 through 2009

10 YEAR PERIOD GROWTHS:

1820: 0.64 0.61 0.59 0.55 0.53 0.50 0.49 0.49 0.48 0.48
1830: 0.47 0.47 0.47 0.48 0.49 0.49 0.47 0.46 0.44 0.42
1840: 0.41 0.40 0.39 0.38 0.37 0.36 0.34 0.32 0.30 0.28
1850: 0.26 0.25 0.25 0.26 0.27 0.27 0.27 0.30 0.31 0.43
1860: 0.30 0.09 0.04 0.05 0.05 0.05 0.08 0.09 0.11 0.00
1870: 0.16 0.38 0.43 0.41 0.41 0.39 0.37 0.34 0.29 0.28
1880: 0.250.20 0.17 0.14 0.11 0.09 0.08 0.11 0.14 0.13
1890: 0.14 0.16 0.18 0.19 0.20 0.20 0.19 0.15 0.14 0.14
1900: 0.15 0.16 0.16 0.16 0.15-0.10-0.26-0.41-0.63-0.60
1910:-0.55-0.51-0.48-0.39-0.28 0.03 0.24 0.41 0.63 0.64
1920: 0.65 0.65 0.60 0.49 0.40 0.32 0.25 0.24 0.22 0.16
1930:-0.15-0.55-0.60-0.71-0.75-0.55-0.39-0.30-0.20-0.10
1940: 0.36 0.79 0.92 1.10 1.20 1.08 1.03 1.05 1.05 1.07
1950: 0.920.951.081.16 1.201.201.191.16 1.121.10
1960: 1.09 1.07 0.96 0.89 0.85 0.80 0.75 0.71 0.68 0.64
1970: 0.60 0.55 0.52 0.48 0.47 0.46 0.46 0.47 0.48 0.53
1980: 0.54 0.55 0.55 0.56 0.55 0.56 0.56 0.56 0.56 0.51
1990: 0.50 0.50 0.49 0.50 0.51 0.52 0.54 0.55 0.57 0.58
1.34: 1943/39000 through 1971/52432: 1.00% for 10 years

Commentary

Populations are estimated for European countries from
1820 on by Madison at

www.ggdc.net/maddison/Historical_Statistics/
horizontal-file_02-2010.xlIs

and for other countries from 1950 on by the UN at

esa.un.org/unpd/wpp/Excel-Data/EXCEL_FILES/
1_Population/
WPP2012_POP_F01_1 TOTAL_POPULATION_BOTH_SEXES.XLS

It is actually not easy to define the start and stop

years of the demographic transition in a meaningful way.
The data needed to precisely define the start is gener-

ally unavailable. Populations also grow as the food

supply grows (as happened when the amount of land under
cultivation grew in America), and may shrink as the

culture changes (as is happening now in Europe), so the
demographic transition is superimposed on a slower
long-term growth curve.

We have kept this problem simple even though the results
our solutions compute are not that close to the best
that can be computed. The book

A Concise History of World Population,
by Massimo Livi-Bacci, English Translation, 2012

gives the following data (taken from a paper by J,-C.
Chesnais) on page 118:

transition.txt 10/ 15/ 13

15: 48: 46

5 of 5

Country Start and Stop Year Multiplier

Sweden 1810 - 1960 3.83
Germany 1876 - 1965 211
USSR 1896 - 1965 2.05
France 1785 - 1970 1.62
China 1930 - 2000 2.46
Mexico 1920 - 2000 7.02

File: transition.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Tue Oct 15 15:18:13 EDT 2013

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Author: walton $

$Date: 2013/10/15 19:48:46 $
$RCSfile: transition.txt,v $
$Revision: 1.16 $

pul | eys. t xt

10/ 15/13 20:37:35

1 of 2

Pulley Belts

You have been asked to determine the length of a belt
that connects two pulleys from the XY coordinates of
the pulley centers and the radii of the pulleys.

For each of several test cases, first one line con-
taining just the test case name, and then one line
with six floating point numbers in the format:

X1Y1R1X2Y2R2

where the first pulley has center at (X1,Y1) and radius
R1, and the second pulley has center at (X2,Y2) and
radius R2.

-10,000 <= X1, Y1, X2, Y2 <= +10,000
0<R1, R2<=1,000
distance between (X1,Y1) and (X2,Y2) > R1 + R2

Input ends with an end of file.

For each test case, first a copy of the test case name
line from the input, and then one line with the belt
length as a floating point number with exactly 3 decimal
places. The belt may NOT cross itself.

Sample Input

-- SHOULD BE PI + 10 --
00050505

-- SHOULD BE PI + 10 --
8-75054-4505

-- SHOULD BE NEAR PI --

00 0.500.500002 0.000001

-- RANDOM SAMPLE 1 --

8.56 -0.23 3.289 -5.738 17.290 7.387
-- RANDOM SAMPLE 2 --

356 782 256 753 -219 74

Sample Output

-- SHOULD BE PI + 10 --
13.142

-- SHOULD BE PI + 10 --
13.142

-- SHOULD BE NEAR PI --
3.142

-- RANDOM SAMPLE 1 --
79.512

-- RANDOM SAMPLE 2 --
3221.263

pul | eys. t xt 10/ 15/13 20:37:35 2 of
Tips File: pulleys.txt
Author: Bob Walton <walton@seas.harvard.edu>

Input consists of lines read from the standard input.
Input ends when an end-of-file is read from the standard
input. Output consists of lines written to the standard
output. For example input/output code see

“/demos/solutions/summer/summer.EXT
where EXT is c, cc, or java.

To solve the problem you, of course, draw a diagram,
draw one or more extra lines, and apply the fundamental
ideas of plane geometry and trigonometry to compute a
bunch of line segment lengths and angles. Thus you can
add debugging code to print these. Some of what is out-
put when we run ‘make debug’ on the judge’s solution is:

-- SHOULD BE PI + 10 --

... |BD] =5 CAB = 1.5708 ACD = 1.5708

13.142

-- SHOULD BE PI + 10 --

... |BD| =5 CAB = 1.5708 ACD = 1.5708

13.142

-- SHOULD BE NEAR PI --

... |BD] = 0.00173205 CAB = 0.0034641 ACD = 3.13813
3.142

where A is the center of pulley 1, B is the point where
the belt is tangent to pulley 1, C is the center of
pulley 2, D is the point where the belt is tangent to
pulley 2, and ... denotes output we omitted because it
might tell you where we drew the extra lines.

Date: Tue Oct 15 20:33:08 EDT 2013

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Author: walton $

$Date: 2013/10/16 00:37:35 $
$RCSfile: pulleys.txt,v $
$Revision: 1.7 $

crates.txt 10/ 05/ 13

08: 05: 21

1 of 3

Nested Crates

Given the length, width, and depth of each of a set of
crates, determine the maximum number that can be nested
inside each other. Because the foam used to pack crates
inside each other consists of rectilinear blocks, a

nested crate must have sides parallel to its containing
crate. Thus a crate fits in another if and only each
dimension of the smaller is less than the corresponding
dimension of the larger (where crates can be rotated, of
course).

For each of several test cases, first one line con-
taining just the test case name, and then one line
containing just the number N of crates, and then

N lines each containing

HWD

where H, W, and D are the height, width, and depth
of one crate. All numbers are integers. Some of
the crates are very small and some very large; a
bit strange, but true.

2<=N<=100
1 <=H,W,D <= 1,000

Input ends with an end of file.

Output

For each test case, first a copy of the test case name
line from the input, and then one line containing just

the maximum number of crates that can be nested inside
each other. Note that the largest crate in a set of

nested crates is counted, so if no two crates nest, the
answer is ‘1’

Sample Input

-~ SAMPLE 1 --
2

111

461

-~ SAMPLE 2 -
4

111

222

333

123

-~ SAMPLE 3 -
5

222

333

444

223

112

crates.txt 10/ 05/ 13 08:05: 21 2 of 3
Sample Output -- SAMPLE 1 --
------------ (1,1,1)
1
-- SAMPLE 1 -- -- SAMPLE 2 --
1 (1,1,1)<(2,2,2)
-- SAMPLE 2 -- (1,1,1)<(3,3,3)
3 (2,2,2)<(3,3,3)
-- SAMPLE 3 -- (1,1,1)<(2,2,2)<(3,3,3)
3 3
-- SAMPLE 3 --
(2,2,2)<(3,3,3)
Tips (2,2,2)<(4,4,4)

Input consists of lines read from the standard input.
Input ends when an end-of-file is read from the standard
input. Output consists of lines written to the standard
output. For example input/output code see

“ldemos/solutions/summer/summer.EXT
where EXT is c, cc, or java.
You can add debugging code that prints which crates

can be nested inside which other crates. The output
of running ‘make debug’ on the judge’s solution is:

(3,3,3)<(4,4,4)
(2,2,3)<(4,4,4)
(1,1,2)<(3,3,3)
(1,1,2)<(4,4,4)
(1,1,2)<(2,2,3)
(1,1,2)<(3,3,3)<(4,4,4)
3

Here the judge, being a bit of a debugging fanatic, has
taken the trouble to compute and output one of the
possible maximum nestings, which is output on the line
just before the maximum nesting length.

crates.txt 10/ 05/ 13

08: 05: 21

3 of 3

File: crates.txt
Author: Shai Simonson <shai@stonehill.edu>
with minor revisions by
Bob Walton <walton@seas.harvard.edu>
Date: Sat Oct 506:10:25 EDT 2013

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Author: walton $

$Date: 2013/10/05 12:05:21 $
$RCSfile: crates.txt,v $
$Revision: 1.3 $

onlinestring.txt

10/ 14/ 13 02: 44: 06 1 of

Online String Matching

The ‘online string matching’ problem is finding all the
substrings of a text string that match a given pattern
string, assuming the pattern is given first, and is
much shorter than the text string, or one pattern is
matched against many text strings, so the pattern
string may be preprocessed to optimize the match.

Assume there is a single text string t of length n with
characters t[0], ..., t[n-1], a pattern string p of

length m with characters p[0], ..., p[m-1], and you
are asked to find all s >= 0 such that t[s,...,s+m-1]

is an exact match to p. Here s is called the ‘shift’,
and you are asked to find all the ‘matching shifts’,
i.e., all s for which p matches t[s,...,s+m-1].

A crude algorithm will check all values of s with simple
substring comparison and have at worst case O(mn) char-
acter comparisons. The Knuth algorithm improves this by
having exactly n character table lookups, but there are
algorithms with O(mn) worst case character comparisons
or table lookups that outperform the Knuth algorithm in
typical real world cases. You are being asked to code
and evaluate several of these.

All of the algorithms you are being asked to evaluate
work by comparing characters from the end of the pattern
p toward the beginning of p. When this comparison is
completed, either by a character mis-match or by exhaus-
tion of p when s is a matching shift, s is incremented

by a value that is a function of p and one or two char-
acters read from t. This shift increment is taken from

a precomputed table S indexed by the characters read.

For example, if for particular p and t the first char-
acter comparison for each s always fails, ¢ = t[s+m-1]
is the character looked up in S, and c is never in p at
all, then the shift increment can always be m, and there
will be only n/m character comparisons and n/m table
lookups, for a total of 2n/m operations.

The ways of computing S that you are to study are-

1. Horspool Algorithm. ¢ =t[s+m-1]. j = S[c] is
chosen as the smallest j such that 1 <= j<m and
p[m-1-j] =c, orj=m.

2. Quick-Search Algorithm. ¢ =t[s+m]. j= S[c] is
chosen as the smallest j such that 1 <=j <=m and
p[m-j] =c, or j = m+1.

3. Berry-Ravindran Algorithm. c1 = t[s+m-1], c2=t[s+m].
j=S[cl,c2]is the smallest jsuchthat 1 <=j<m
and p[m-1-j] = c1 and p[m-j] = c2, or j=m and
p[0] =c2, or j = m+1.

You are given pairs t and p are are being asked to com-
pute the number of character comparisons plus the number
of table lookups required for each pair and each algor-

ithm to find all the matching shifts. The Knuth algor-

ithm whose number of comparisons is always 0 and whose
number of table lookups is always n is also to be

included in the output.

Note that we assume that for each s you begin with a
comparison of t[s+m-1] and p[m-1] and continue with
comparisons from right to left until you get a mismatch
or p runs out of characters. We also assume that
initially s = 0 and you stop only when the next compar-
ison or table lookup cannot be done because it would
require reading a character beyond the end of t.

onlinestring.txt 10/ 14/ 13

02: 44: 06

2 of 3

For each of several test cases, first a line containing
just the test case name, then one or more lines contain-
ing the text t, followed by a line containing just

‘END’, and then one or more lines each containing a
pattern p, followed by a line containing just ‘END’.

Thus each test case has a single text and one or more
patterns.

The text t is made by putting a line feed at the end of
each text line and concatenating the lines, so the lines
are separated by line feeds and the last line ends in

a line feed. Each pattern is on a line by itself.

The maximum length of every line is 80 characters, and
the total maximum length of the text t with line feeds

is 1,000,000 characters. Each line contains only

graphic ASCII characters (ASCII characters with codes in
the range 33 .. 126) or single spaces (ASCII code 32).
None of the texts or patterns are empty.

Input ends with an end of file.

For each test case, first a line containing the test
case name, and then for each pattern line 6 lines, first
an exact copy of the pattern input line, and then the
following 5 lines:

Pattern Length = #, Text Length = #, Matches = #
Knuth: # = # comparisons + # lookups

Horspool: # = # comparisons + # lookups
Quick-Search: # = # comparisons + # lookups
Berry-Ravindran: # = # comparisons + # lookups

where # denotes an integer >= 0. The first two #'s

are m and n respectively, and the 4'th though 6’th #'s
are n, 0, and n respectively. The ‘Matches’ # is the
number of matching shifts and can be computed by any
of the three algorithms being studied, as all three
algorithms agree.

Sample Input

-- SAMPLE 1 --
abcaaaabcaaaabc
abcaaabcaaabc

END

abc

aaa

END

-- SAMPLE 2 --

Hopping hippers flipping,
Flipping floppers sticking,
Sticking stoppers clicking,
Clicking cloppers hopping.
END

ing

pers

ick

END

onlinestring.txt

10/ 14/ 13 02: 44: 06 3 of

Sample Output

-- SAMPLE 1 --

abc

Pattern Length = 3, Text Length = 30, Matches = 6
Knuth: 30 = 0 comparisons + 30 lookups

Horspool: 38 = 25 comparisons + 13 lookups
Quick-Search: 32 = 22 comparisons + 10 lookups
Berry-Ravindran: 32 = 22 comparisons + 10 lookups
aaa

Pattern Length = 3, Text Length = 30, Matches = 6
Knuth: 30 = 0 comparisons + 30 lookups

Horspool: 51 = 35 comparisons + 16 lookups
Quick-Search: 48 = 35 comparisons + 13 lookups
Berry-Ravindran: 41 = 30 comparisons + 11 lookups
-- SAMPLE 2 --

ing

Pattern Length = 3, Text Length = 109, Matches = 8
Knuth: 109 = 0 comparisons + 109 lookups
Horspool: 94 = 55 comparisons + 39 lookups
Quick-Search: 78 = 47 comparisons + 31 lookups
Berry-Ravindran: 78 = 47 comparisons + 31 lookups
pers

Pattern Length = 4, Text Length = 109, Matches = 4
Knuth: 109 = 0 comparisons + 109 lookups
Horspool: 74 = 43 comparisons + 31 lookups
Quick-Search: 64 = 39 comparisons + 25 lookups
Berry-Ravindran: 61 = 37 comparisons + 24 lookups
ick

Pattern Length = 3, Text Length = 109, Matches = 4
Knuth: 109 = 0 comparisons + 109 lookups
Horspool: 84 = 46 comparisons + 38 lookups
Quick-Search: 66 = 37 comparisons + 29 lookups
Berry-Ravindran: 66 = 37 comparisons + 29 lookups

Reference

For a whole host of online string matching algorithms
see

The Exact Online String Matching Problem:
A Review of the Most Recent Results,
Simone Faro and Thierry Lecroq,

ACM Computing Surveys, vol 45, no 2, 2013.

File: onlinestring.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Mon Oct 14 02:27:24 EDT 2013

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Author: walton $

$Date: 2013/10/14 06:44:06 $
$RCSfile: onlinestring.txt,v $
$Revision: 1.11 $

| ocal col or. t xt

10/ 14/ 13 03:10: 46 1 of

Local Color

You have been asked to write a program that will run as
a local algorithm in a network of processors and improve
a coloring of the network graph.

A network graph is an undirected graph. The vertices
are called nodes and the edges are called connections.
Two nodes sharing a connection are neighbors. The
number of connections attached to a node is the degree
of the node, and the degree of the network, denoted by
D, is the maximum degree of any node. If a node has
degree d, we identify its connections by integers in the
range O, ..., d-1. The number of nodes in the network

is N, and we identify nodes by integers in the range

0, ..., N-1.

A coloring is an assignment of a color to each node
such that NO neighbors have the same color. If there
are C colors, we represent the colors by integers in
the range O, ..., C-1.

The problem is that given a coloring with C > D+1
colors, improve the coloring to one with at most D+1
colors, using a local distributed algorithm.

A local distributed algorithm is a deterministic program
code that runs at each node and executes in K cycles.

At the beginning of each cycle but the first each node
receives a message from each of its neighbors. The node
then computes and for each cycle but the last, outputs a
message for each of its neighbors. At the beginning of
the first cycle each node receives a single input

message and at the end of the last cycle each node
outputs a single output message.

Your program executes one cycle at one node, and is
invoked by the judge’s ‘monitor’ program K*N times to
perform the local distributed computation and produce an
answer.

Importantly, in our problem K is set equal to C, the
number of original colors.

Messages are single lines of ASCII text whose maximum
length is 1,000 characters. Each node has a memory that
is represented as a message from the node to itself,

i.e., is output by the node at the end of a cycle and

input by the node at the beginning of its next cycle.

Your program is called by a monitor program in order
to execute each cycle of each node. The monitor pro-
gram, which is named ‘localcolor_network’, is provided
by the judge. Your program is named ‘localcolor’.

You can invoke these programs by the command

localcolor_network localcolor

Input to Your Program

For each cycle of each node, first a line containing the
following information:

N K node_id node_degree cycle_number
where N is the total number of nodes, K the total number

of cycles, the N nodes have node_id’s in the range 0,
..., N-1, and the K cycles are number O, ..., K-1.

| ocal col or. t xt 10/ 14/ 13

03: 10: 46 2 of

Then for the first cycle (cycle 0) a single line.
C initial_node_color

where C is the initial number of node colors and the
node is given an initial color in the range O, ..., C-1.

For cycles other than the first, the above first input

line is followed by lines containing messages output by
the previous cycle. The first of these is a line that
contains the contents of the memory of the node at the
end of the previous cycle (the message from the node to
itself). This line is followed by a line for each con-
nection containing the message from the connection’s
neighbor. These connection message lines are in order
of the connection number relative to the node, from 0
through node_degree-1.

You define the format of all message lines. Message
lines may not be longer than 1,000 characters and must
contain only printable ASCII characters and single
spaces (they need to be printable to debug, and they
are not permitted to contain form feeds, line feeds,
tabs, or any control character other than single

space).

Input ends with an end of file, at which point your
program should terminate (as there are no more test
cases).

Output from Your Program

The output from your program for all cycles but the last
is a sequence of message lines. First, the line con-
taining the contents of the node’'s memory (the message
from the node to itself). Then for each connection a

line containing the message output by the cycle for

the connection. These lines are in order of the connec-
tion number, from O through node_degree-1. Lastly one
line containing just ‘END’ (used to detect bugs).

For the last cycle of an algorithm execution output only
one line containing just an integer in the range O, ...,

D that is the color of the node after the algorithm has
completed, followed by one line containing just ‘END’.
The monitor program will check that two neighbors do not
have the same color at this point, and that all colors

are in the range 0,..., D. Your algorithm will be

declared to be successful for the test case if this is

Sso.

Input to the Monitor

For each test case, first a line containing just the
test case name. Then a second line containing

N D C SEED

where N is the number of nodes, D the maximum node
degree, C is the number of initial colors, and SEED is a
9-digit unsigned integer that is the seed of a pseudo-
random number generator used by the monitor to generate
the graph.

| ocal col or. t xt

10/ 14/ 13 03:10: 46 3 of

2<=D<=20
D+1<=N<=1,000
D+1<C<=100

Input ends with an end of file.

Output from the Monitor

For each test case, first a copy of the test case input
lines, and then a line containing just ‘OK’ if the
solution is a coloring with D+1 colors, or a line
containing

FAILED node nl1 and neighbor n2 both colored c

if neighboring nodes n1 and n2 were both colored c,
or a line containing

FAILED node n colored ¢

if node n was colored with ¢ <0 or ¢ > D. If there was
some error in message format, the output will be

FAILED ...

where ... describes the error.

Debugging

You can add debugging arguments to the program command:
localcolor_network localcolor debug_argument ...

If you do this your program will be invoked by the
monitor using the command

localcolor debug_argument ...

and the monitor will output the input and output for
each node and cycle in addition to the usual output

of the monitor. The input/output for a node and cycle
is surrounded by lines containing just *****" and the
input is separated from the output by a line containing
just ‘-----’. You can put debugging information in your
messages, and used the debug arguments to tune this
information.

Sample Input

-- SAMPLE 1 --

10 3 20 783927645
-- SAMPLE 2 --

20 10 50 259140687

Sample Output

-- SAMPLE 1 --
OK
-- SAMPLE 2 --
OK

| ocal col or. t xt 10/ 14/ 13

03: 10: 46

4 of 4

Reference

For a discussion of local distributed algorithms, more
examples, and impossibility results see

A Survey of Local Algorithms, Jukka Suomela,
ACM Computing Surveys, Vol. 45, No. 2, 2013.

File: localcolor.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Mon Oct 14 02:53:43 EDT 2013

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Author: walton $

$Date: 2013/10/14 07:10:46 $
$RCSfile: localcolor.txt,v $
$Revision: 1.9 $

eul eri an. t xt 10/ 12/ 13

01: 04: 54 1 of

Eulerian Cycles

A Eulerian cycle is a closed path in an undirected graph
that includes every edge exactly once. The path may be
non-simple: it may visit a particular vertex many times.

It is easy to show that a graph has an Eulerian cycle if
and only if the graph is connected and every vertex of
the graph has even degree. Here the degree of a vertex
is the number of edges of which the vertex is an end-
point.

You have been asked to find an Eulerian cycle in each
of several connected graphs. Some of the graphs are
very large.

For each of several test cases, first a line containing
just the test case name, then M lines each containing a
representation of an edge of the form

<vertex> - <vertex>
and lastly a line containing just **'. Here <vertex>
is just an integer in the range 1, ..., N where N is
the total number of vertices in the graph.

No edge will be represented more than once.

3 <= N <=100,000.
N -1 <=M <= 1,000,000

All input graphs are guaranteed to be connected and all
vertices in these graphs are guaranteed to have even
degree.

Input ends with an end of file.

Output

For each test case, just two lines, the first containing
an exact copy of the test case name input line, and the
second a possibly very long line containing the list of
vertices visited by an Eulerian cycle, in the order of
visitation. There should be exactly M + 1 vertices in
this list with the first vertex being repeated at the

end of the list. Any one of the many possible Eulerian
cycles may be output.

eul eri an. t xt

10/ 12/ 13 01:04:54 2 of

Sample Input

-- 5 VERTEX COMPLETE GRAPH --

FARWWNNNR R R R
1
GORMORMWOADWN

-- 6 VERTEX REGULAR DEGREE 4 GRAPH --

1
NFRPPFRPOOUOGOORADRWWN

OO0 RWWNNEPRE
1

Sample Output

-- 5 VERTEX COMPLETE GRAPH --
24325145312

-- 6 VERTEX REGULAR DEGREE 4 GRAPH --
1264231653451

File: eulerian.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Sat Oct 12 00:23:41 EDT 2013

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Author: walton $

$Date: 2013/10/12 05:04:54 $
$RCSfile: eulerian.txt,v $
$Revision: 1.5 $

pol yel | i pse. t xt 10/ 14/ 13

15: 27: 17

1 of 2

Polygon/Ellipse Intersection

You have been asked to compute the area of the inter-
section of a convex polygon and an ellipse.

For simplicity, the ellipse is positioned so its major
semi-axis, which is of length A, is on the x-axis, and
its minor semi-axis, which is of length B, is on the
y-axis.

For each of several test cases, first a line containing
just the test case name, then a line containing

ABN

where N is the number of vertices in the polygon, and
then N lines each containing

XY

specifying that (X,Y) is a vertex. The vertices are
listed in clockwise order. N is an integer, all other
numbers are floating point.

3<=N<=100
0<B<=A<=100
-100 <= X,Y <= 100

Input ends with an end of file.

Output

For each test case, first a line containing the test
case name, and then a line containing just the required
area, printed with exactly 3 decimal places.

Sample Input

-- SAMPLE 1 --
413

00

02

80

-- SAMPLE 2 --
5083

00

100 16

100 -16

-- SAMPLE 3 --
113

11

12

21

-- SAMPLE 4 --
100 100 4

-100 -100

-100 +100
+100 +100
+100 -100

-- SAMPLE 5 --
113

00
-0.7071067700 +0.7071067700
+0.7071067700 +0.7071067700

pol yel | i pse. t xt 10/ 14/ 13

15: 27: 17

2 of 2

Sample Output

-- SAMPLE 1 --
3.142

-- SAMPLE 2 --
314.159

-- SAMPLE 3 --
0.000

-- SAMPLE 4 --
31415.927

-- SAMPLE 5 --
0.500

File: polyellipse.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Mon Oct 14 15:26:41 EDT 2013

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Author: walton $

$Date: 2013/10/14 19:27:17 $
$RCSfile: polyellipse.txt,v $
$Revision: 1.8 $

