probl ens 10/ 08/ 11

05: 29: 46

1 of 1

Pr obl ens | ndex Sat Oct 08 05:29:45 AM EDT 2011

BOSPRE 2011 PROBLEMS

The problens are in approxinmate order of difficulty,
easi est first.

probl erms/ sni ffer
Find your way.
Boston Prelimnary 2011

pr obl ens/ vl si conpact
Squeeze and squi sh makes the dish.
Boston Prelimnary 2011

probl ens/ rel ati venei ghbor
" m closer than he is.
Boston Prelimnary 2011

pr obl ens/ bool eci pher
Bi nary obscurati on.
Boston Prelimnary 2011

pr obl ens/ del aunay
Smal|l circles are good circles.
Boston Prelimnary 2011

pr obl ens/ bool ebr eak
So they thought they could fool youl!
Boston Prelimnary 2011

probl ems/ opttriangul ation
For the triangul ar sophisticate.
Boston Prelimnary 2011

pr obl ens/ abducti on
Does your nmind really work |ike this?
Boston Prelimnary 2011

sniffer.txt

10/10/11 00:47:38 1 of

Sniffer has the task of marking the trail through the
Hungry Wods so her pack can travel it quickly at night.
Fortunately the path does not have any forks, so no
searching is required, but sonetinmes its hard to see

whi ch way the path goes.

The path and forest are represented by an array of char-
acters which is a map of the forest area. The edges of
this map array are marked with ‘+' s at the corners, ‘-'s
at top and bottom and ‘|'s at the edges. Wthin the
map ‘# represents inpassable forest and * ' (single
space) represents the path or open passable forest. The
path starts at the upper left corner (array row 2,
colum 2) but may exit anywhere next to a map edge.
Sniffer and her pack nenbers can only nove on the path
by going left, right, up, or down; they CANNOT go di a-
gonally. At any point on the path there is at npbst one
way to continue onward. Note that the path may run

al ong the edge of the map. The path ends when there is
no way to nove forward, and Sniffer knows that the path
wi Il not deadend inside the forest (i.e., surrounded by
“#'s).

Sniffer marks the path by changing the °
ters that are on the path from* ' to

space charac-

For each of several test cases, first a |line containing
the test case nane, then R lines each containing C char-
acters, which encode the array. Each of the characters
inthe Rlinesis ‘+, ‘-, “|", “#, or * ' and repre-
sents one element of the array. R is the nunber of rows
in the array and C the nunmber of columms, and each row
line has exactly C characters. The R array lines are
followed by a Iine containing just ‘.’ that ends the
test case.

6 <= RC<=50. No line, including the test case nane
line, is longer than 80 characters.

The input ends with an end of file.

For each test case, an exact copy of the input for the
test case, but with array characters on the path changed
from* ' to

sniffer.txt

10/10/11 00:47:38 2 of

Sanpl e | nput

OHHHE H|
#ou# #H|

HHHBHBHHHR

HHHBHH

#H#H O#

#
HUHH#T HEHT HHHHEH|
Hith HHHHHR BT B # HERREY

#

BHBHBH BHBHBHIHY HHHH

Sanpl e Qut put

| @ o # H#HHHH #]
| #: #4: 0 H##H|
| #: #: ##:

| #: 000 # #H##|
| #i#HHH |

| - # #HH#H#HHAE #ooiiii#H#H
| o # #n HEHAHE HEHH HHHHBH|
| : ###: HHAHHH, BHHRRE # # #HERH|
| oo AEAEES L H H L H|

File: sniffer.txt
Aut hor : Bob Walton <wal t on@eas. harvard. edu>
Dat e: Mon Cct 10 00: 47: 29 EDT 2011

The aut hors have placed this file in the public domain
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $

$Dat e: 2011/10/10 04:47:38 $
$RCSfile: sniffer.txt,v $
$Revision: 1.5 $

vl si conpact . t xt 10/10/11 21:34:33 1 of

VLSI Compaction
e The integers are in the given order, but any kind of

whi t espace (spaces, tabs, |ine breaks) nmay occur between
VWhen laying out a VLSI circuit, the follow ng problem any two consecutive integers.
arises after the circuit has been initially laid out.
The problemis to squish the circuit into a mninmm 2 <= N <= 100
area. It is too difficult to do this in nore than one
di mension, but not hard to do it in a single dinension. I nput ends with an end of file

Abstractly the problemis as follows. Gven a set of
N horizontal coordinate values x[i] (actually the hori- Qut put
zontal coordinates of VLS| transistors and |arger ‘com | ------
ponents’), and a set of constraints of the form
For each test case two lines. The first line is an

0 <=d[i,j] <=x[jl - x[i] where j > i exact copy of the test case nane input line. The second
line contains the integers

find positions x[i] such that x[i] - x[1] is m nimzed.

Here the value index i in x[i] ranges from1 through N x[1] x[2] ... X[N
and there is one constraint for every i and j for
which j > i, though d[i,j] = 0 will be true for many in the given order, such that x[i] - x[1] is mnimzed
of these. for i =2, 3, ., N
X[1]] = 0 is required (otherw se the nunbers would be
| nput under - det er m ned) .
For each of several test cases, first a |line containing Sanpl e | nput

just the test case nane. This is followed by one or | ------ -----
nore |ines containing the foll owi ng non-negative integer

nunbers: -- SAMPLE 1 --
53082303208
Nd1,2] d1,3] d[1,4] ... d[1,N -- SAWPLE 2 --
d[2,3] d[2,4] ... d[2,N 800450309
d[3, 4] d[3, N| 231210
.......... 70813
diN1, N 2052
123
10
0

vl si conpact . t xt 10/10/11 21:34:33

2 of 2

Sanpl e Qut put

0
-- SAWPLE 2 --
0029 11 12 14 14

File: vl si compact . t xt
Aut hor : Bob Wl ton <wal t on@eas. harvard. edu>
Dat e: Mon Cct 10 21:33:29 EDT 2011

The aut hors have placed this file in the public domain
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $
$Date: 2011/10/11 01:34:33 $

$RCSfile: vlsicompact.txt,v $
$Revision: 1.7 $

rel ati venei ghbor. t xt

10/ 02/11 04:05: 34 1 of

Rel ati ve Nei ghbor Graphs

G ven a set of points in a plane, the associated rel -
ative nei ghbor graph has an edge between two points P1
and P2 if and only if there is NO point P3 such that

d(P3,P1l) < d(P1,P2) and d(P3,P2) < d(P1, P2)
where d(Px,Py) is the distance between Px and Py.

You have been asked to conpute the relative nei ghbor
graph of a set of points.

For each test case, first a line containing just the
test case nanme, and then |lines containing the nunbers

N x[1] y[1] x[2] y[2] x[N y[N

where there are N points and (x[i],y[i]) is the i'th
point for 1 <= i <= N On these |lines nunbers may be
separated by any whitespace, including spaces, tabs,
and |ine feeds.

3 <= N <= 100. The x,y coordinates may be any fl oating
poi nt nunbers.

I nput ends with an end of file.

For each test case, first a line that is an exact copy
of the test case nanme input line. Then one line for
each edge in the rel ative neighbor graph, this |line
havi ng the format

P
to specify that there is an edge from (x[i],y[i]) to
(x[i1,y[ji]l). Here 1 <=i,j <= N. Do NOT output any
edge nore than once.

The output may be printed as a graph or displayed in an
X-w ndow by the commands:

print_graph
di spl ay_graph

provi ded the input and output of your program has been
stored in the files

rel ativenei ghbor.in
rel ati venei ghbor. out

and the test case nane lines in these files do not have
a digit as their first non-whitespace character. To see
the sanpl e output instead use the comuands

print_graph sanple.in sanple.test
di spl ay_graph sanmple.in sanple.test

(here sanmple.test is the output for sanple.in).

rel ati venei ghbor. t xt 10/ 02/11 04:05: 34

2 of 2

Sanpl e | nput

-- SAMPLE 1 --

3143258

-- SAWPLE 2 --

7-1.010-1.0151.01 2.01 3.04 3.02
5.05 2.003 8.21 0 8.22 5.03

Sanpl e Qut put

SAMPLE 1 --

[CSIN\N]

SAMPLE 2 --

CURWNR ! PR
~oubhww

File: rel ati venei ghbor . t xt
Aut hor : Bob Wl t on <wal t on@eas. har var d. edu>
Dat e: Sun Cct 2 03:59:50 EDT 2011

The aut hors have placed this file in the public donain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $

$Dat e: 2011/10/02 08:05:34 $
$RCSfil e: relativeneighbor.txt,v $
$Revision: 1.6 $

bool eci pher . t xt

10/10/11 21:36:51 1 of

Bool e Ci phers

A Bool e Ci pher consists of a list of all the characters
that can be used in a message in the formof a binary
tree which has the syntax:

tree ::=1leaf | [left-child right-child]
left-child ::= tree

right-child ::=tree

| eaf ::= character other than ‘[’ or ‘']’

For exanpl e,

[[leH [r JI[h[Ti]]]

represents the binary tree

An encrypted nessage is a sequence of 0's and 1's that
is interpreted by the foll ow ng process:

(1) Start at the tree root.

(2) On reading a 0, nmove to the left child of the
current tree node.

(3) On reading a 1, nove to the right child of the
current tree node.

(4) On reaching a leaf in (2) or (3), output the |abe
character on the | eaf and nove back to the tree
root .

In other words, each character is represented by the

| abel of the path fromthe root to the character, where
the path | abel is a sequence of 0's and 1's, with O
meaning ‘nove to the left child and 1 neaning ‘nove to
the right child

For exanple, the message ‘H There' is encrypted using
the above Bool e Ci pher as ‘00111101111010000010000’ .

You are given Boole C phers and nessages encrypted wth
these ciphers and are being asked to decrypt the
nmessages.

For each of several test cases, first a line containing
the test case nane, second a |ine containing a Boole

Ci pher, and third a |ine containing a nessage encrypted
using that cipher. The input ends with an end

of file.

WARNI NG The input lines can be up to 1000 characters
| ong!

The characters ‘[’ and ‘]’ do not appear in nessages or
as |l eaves in ciphers, but any other ASCI| character that
prints a mark, and the single space character, can
appear. No character appears nore than once as a cipher
leaf. At least two characters will appear in each

ci pher.

bool eci pher . t xt

10/10/11 21:36:51 2 of

For each test case, first an exact copy of the test case
nane |ine, second an exact copy of the encrypted test
case nessage line copied fromthe input, and third the
decrypted test case nessage on a line by itself.

Sanpl e | nput

-- SAMPLE 1 --
[[[eH[r 11[h[Ti]]]
00111101111010000010000

-- SAMPLE 2 --

[L[t[h?]][[sla]]W
100100110000101010000000100110000011
-- SAMPLE 3 --

[of H]

11010110

-- SAMWPLE 4 --

[[h{[[e][st]]la]][[oW[?g]]]
1010001101011010011111000100001010110
-- SAWPLE 5 --

[[eBI[[[io]lgl [[sIT[[a][t['r]]]]]]
01100011110110011100101111011101100111111100111110

Sanpl e Qut put

-- SAMPLE 1 --
00111101111010000010000

H There

-- SAWMPLE 2 --
100100110000101010000000100110000011
VWat s that?

-- SAWPLE 3 --

11010110

Ho Ho

-- SAWVPLE 4 --
1010001101011010011111000100001010110
VWhat goes?

-- SAMPLE 5 --
01100011110110011100101111011101100111111100111110
Bits gal ore!

File: bool eci pher. t xt
Aut hor : Bob Wl ton <wal t on@eas. harvard. edu>
Dat e: Mon Cct 10 21:36:00 EDT 2011

The aut hors have placed this file in the public domain
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Author: walton $
$Date: 2011/10/11 01:36:51 $
$RCSfil e: bool eci pher.txt,v $
$Revision: 1.9 $

del aunay. t xt

10/03/11 06:53:48 1 of

Del aunay Tri angul ation

You have been asked to find the Del aunay Triangul ation
of a set S of points in the plane.

The Del aunay Triangul ati on of a set S of points in the
plane is a triangulation of the convex hull of S such
that the circuntircle of each triangle has no points of
Sinits interior. As long as there is no circle with 4
or nore points of S on its boundary and no points of S
inits interior, the Delaunay Triangulation of Sis

uni que, and the edges of the triangulation are just the
edges of triangles with vertices in S which have no
points of Sin the interior of their circuntircle.

The Del aunay Triangul ation of S is coveted because anong
all the possible triangulations of Sit is the one that
nmaxi m zes the mni num angl e between edges of the triang-
ul ation.

For each of several test cases, first a |line containing
not hi ng but the nane of the test case, and then lines
cont ai ni ng the nunbers

N x[1] y[1] x[2] y[2] X[Ny[N

where (x[i],y[i]) is the i'th point of Sfor 1 <=1i <=
N. 3 <= N <= 100. The xy coordinates are floating
poi nt .

To sinmplify things, the input will be such that the

Del aunay triangulation is unique; that is, no 4 points
of Swill be on the sane circle if that circle contains
no points of Sinits interior

I nput ends with an end of file.

For each test case, first a line that is an exact copy
of the test case name input line. Then one line for
each edge of the Del aunay Triangulation of S, this line
havi ng the format

]
to specify that there is an edge from (x[i],y[i]) to
(x[j1.,yli]). Here 1 <=1i,j <= N Do NOT output any
edge nore than once.

The output nmay be printed as a graph or displayed in an
X-wi ndow by the conmmands:

print_graph
di spl ay_graph

provi ded the input and output of your program has been
stored in the files

del aunay.in
del aunay. out

and the test case name lines in these files do not have
a digit as their first non-whitespace character. To see
the sanpl e output instead use the comands

print_graph sanple.in sample.test
di spl ay_graph sanple.in sanple.test

(here sanple.test is the output for sanple.in).

del aunay. t xt

10/03/11 06:53:48 2 of

Note: The rel ative nei ghbor graph conputed in the
Rel ati ve Nei ghbor Graphs problemis a subgraph of the

Del aunay Tri angul ati on.

Sanpl e | nput

N O

-1.01 0-1.01 5 1.01 2.01 3.04 3.02
5.05 2.003 8.21 0 8.22 5.03

Sanpl e Qut put

SAMPLE 1 --

'
WWN

SAMPLE 2 --

OOUOPRNAEANWFROOFRPRWENE ! PN
N~NONNPRRPRROOOOIOTWWN

File: del aunay. t xt
Aut hor : Bob Wal ton <wal t on@eas. harvard. edu>
Dat e: Mon Oct 3 05:59:33 EDT 2011

The aut hors have placed this file in the public domain
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $

$Date: 2011/10/03 10:53:48 $
$RCSfile: delaunay.txt,v $
$Revision: 1.5 $

bool ebr eak. t xt

10/ 04/ 11 04:58: 30 1 of

Br eaki ng Bool e Ci phers

The enemny is using Boole C phers (see the Bool e C pher
problem. Your spies have intercepted some nessages in
both encrypted and unencrypted form and you have been
asked to find the Bool e C phers used to encrypt these
nmessages.

For each of several test cases, three lines. First a
line containing the test case name, second a |ine con-
taining the encrypted message, and third a |line contain-
ing the unencrypted nessage. The input ends with an
end of file.

The characters ‘[', ‘]’, and ‘@ do not appear in
unencrypt ed messages, but any other ASCI| character
that prints a mark, and the single space character,
can appear.

WARNI NG The input |ines can be up to 1000 characters
| ong!

For each test case, three lines. First, an exact copy
of the test case nane |line, second a line containing the
Bool e Ci pher used to encrypt the message, and third a
line copied fromthe input containing of the encrypted
nessage.

The Bool e C pher nay be under-determ ned. You are to
out put the cipher which gives the snallest cipher tree
depth (i.e., length of |ongest path fromthe root), and
among these the shortest encoding for the first charac-
ter of the nessage, and anpong these the shortest encod-
ing for the second character, etc. No character nay

| abel two | eaves of the cipher.

The ci pher tree depth MJUST NOT be greater than 8. |If
no ci pher with depth <= 8 can be found, out put
‘FAILED in place of the cipher

Al so sonme subtrees of the cipher tree may be undeter-
m ned, and these are represented by the single character
l@.

The output file is fornmatted so it can be input to the
bool eci pher probl em solution to reproduce the input
file (if FAILED cases are excluded).

bool ebr eak. t xt 10/ 04/ 11 04:58: 30 2 of
Sanpl e | nput
----------- File: bool ebr eak. t xt

Aut hor : Bob Wl t on <wal t on@eas. har var d. edu>
-- SAMPLE 1 -- Dat e: Tue Cct 4 04:57:27 EDT 2011
00111101111010000010000
H There The aut hors have placed this file in the public donain;
-- SAMPLE 2 -- they make no warranty and accept no liability for this
100100110000101010000000100110000011 file.
Whats that?
-- SAMPLE 3 -- RCS Info (may not be true date or author):
1101101101
Ho Ho $Aut hor: walton $
-- SAWPLE 4 -- $Dat e: 2011/10/04 08:58:30 $
1010001101011010011111000100001111111 $RCSfil e: bool ebreak.txt,v $
What goes? $Revision: 1.7 $
-- SAMPLE 5 --

01100011110110011100101111011101100111111100111111
Bits gal ore!

Sanpl e Qut put

-- SAWPLE 1 --

[[[eH[r 11[h[Ti]]]
00111101111010000010000

-- SAMPLE 2 --

[[[t[h?]][[s]la]]W
100100110000101010000000100110000011
-- SAMPLE 3 --

[[@][H]

1101101101

-- SAMPLE 4 --

FAI LED!
1010001101011010011111000100001111111
-- SAWPLE 5 --

FAI LED!
01100011110110011100101111011101100111111100111111

opttriangul ation.txt

10/ 11/11 08:08: 34 1 of

Optimal Triangul ation

A triangul ation of a polygon is a division of the area
of the polygon into disjoint triangles whose vertices
are vertices of the polygon. G ven an assignnent of
values to triangles, an optinmal triangulation is a
triangulation for which the sum of the values of the
triangles is maximal.

You have been asked to find optimal triangul ati ons of
convex polygons. The triangle value function is repre-
sented in fully parenthesized prefix operator notation
usi ng the conponents:

a, b, c The sizes in degrees of the angles of
the triangle.

A B C The I engths of the sides of the tri-
angle. Side A is opposite angle a,
side B opposite angle b, side C opposite
angle c.

+ Sum of argunents.

* Product of argunents.

- If one argunent, the negative of that,
and if two argunents, the first mnus
the second. Illegal for nore than two
argunment s.

Maxi mum of argunents. (circunflex)
M ni mum of argunents. (letter v)

There is no whitespace in a function representation; for
exanpl e, (+abc) denotes the sum of angles of a triangle
(whi ch always equals 180). A ‘(' is always foll owed by

an operator, i.e., by ‘4, “* ‘-7 AN or ‘v, An
operator is always preceded by a ‘(’. Operators always
have at |east 2 argunents, except ‘-’ which can have

one argunent. Functions can return negative val ues.

The value function is required to be symetric under

permut ati on of the angles of a triangle, with sides

bei ng changed in correspondi ng fashion. For exanple,
(v(*aBC) (*bCA) (*cAB))

is symetric, but (+ab) is not.

You are to represent a triangulation as a list of vertex
triples, one for each triangle, giving the vertices of

the triangle. |If there are N polygon vertices, there
will be N2 triangles.
I nput

For each of several test cases, a |ine containing just
the test case nane, followed by a |line containing the
triangl e valuation function, followed by a |lines con-
taining the foll ow ng nunbers

N x[1] y[1] x[2] y[2] X[Ny[N

where N is the nunber of vertices of the convex pol ygon
and the vertices in counter-clockw se order are
(x(1],y[1]), (x[2],y[2]), ..., (X[N,y[N). These
nunbers are separated by spaces and new lines. The x
and y coordinates are floating point nunbers in the
range [-1000, 1000]. The polygons are guaranteed to be
convex, w thout any 3 vertices being on a straight Iine.

3 <= N <= 100. Lines will have no nore than 80
characters. |Input ends with an end of file.

opttriangul ation.txt

10/ 11/11 08:08: 34 2 of

For each test case, a line that is an exact copy of the
test case nane input line, followed by N2 |ines each
with the fornat

i |k

specifying the triangl e whose vertices are

(x[i],y[i]) (x[i1.ylil) (X[KT, y[KI)
These triangles give the desired triangul ati on whose
sum of triangle values is maximal. The input will be

such that this triangulation is unique.

Sanpl e | nput

-- SAWPLE 1 --
(~abc)
400101201
-- SAWPLE 2 --
(vabc)
400101201

Sanpl e Qut put

File: opttriangul ati on. t xt
Aut hor : Bob Wal ton <wal t on@eas. harvard. edu>
Dat e: Tue Cct 11 08:08:21 EDT 2011

The aut hors have placed this file in the public domain
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $

$Date: 2011/10/11 12:08:34 $
$RCSfile: opttriangulation.txt,v $
$Revision: 1.7 $

abducti on. t xt

10/ 10/ 11 21:45: 32 1 of

Logi cal Abduction

Abduction is the process of finding hypotheses that
expl ai n observed facts. Suppose p, g, r, s, t, etc
represent propositions that are either true or false.
Let ‘p&g=>r' be an ‘inplication’ that neans ‘p and q
together inmply r’. Suppose you know

p&g=>r
p&s=>r
q&s=>p

and you want to explain
r

The ‘ hypot heses’ of an inplication are the propositions
appearing before the ‘=>", and the conclusion is the
proposition appearing after the ‘=>. E. g., in ‘p&y=>r’
p and g are the hypotheses and r is the concl usion

An ‘abduction’ is a set of inplications that are used to
derive the propositions to be explained. The hypotheses
of the abduction are the hypotheses of used inplications
that are NOT the conclusions of any used inplication,
and al so any propositions to be explained that are NOT
concl usi ons of any used inplication.

For exanple, if just
p&g=>r

is used in an abduction of r, then p and q are the
hypot heses of the abduction. |If

p&s=>r
q&s=>p

are used instead, q and s are the hypotheses of the

abducti on.

If NOinplications are used, r is the sole

hypot hesi s of the abducti on.

In order to decide which abduction is best we assign a

cost

for assum ng each proposition and try to minimze

the total cost of all the hypotheses of the abduction.
For each possi bl e abduction costs are assigned according
to the follow ng rul es:

(R1)

(R2)

The propositions to be explained are assigned a
cost directly. These costs are strictly positive.

For exanple, we will wite ‘r[10]’ to indicate that
r is assigned the cost 10.

For an inplication like ‘p&=>r', the hypotheses

of the inplication are assigned a weight, typically
a small positive fraction. |If the inplication is
used in the abduction, the cost of each hypothesis
is assigned to be the cost of the conclusion tines
the wei ght of the hypothesis. Note that an inpli-
cation nay not be used in the abduction if its
concl usi on has not been assigned a cost.

For exanple, the above inplications m ght be
written:

p[0. 5] &q[0. 6] =>r
p[0. 4] &s[0. 2] =>r
g[0.3]&s[0. 7] =>p

to indicate, for exanple, that if the first
inmplication is used, p is assigned a cost equa

to 0.5*cost-of-r. If r costs 10 and the first
inmplication is used in an abduction, this inplica-
tion assigns 0.5*10 =5 to p and 0.6*10 = 6 to q.

abducti on. t xt

10/ 10/ 11 21:45:32 2 of

(R3)

(R4)

If a proposition is assigned nore than one cost,
the mnimum cost is used for that proposition in
ALL cal cul ati ons.

Thus if the abduction to explain r[10] uses the
i mplications

p[0. 4] &s[0. 2] =>r
g[0.3]&s[0. 7] =>p

the costs arer =10, p = 0. 4*10 =4, s =0.2*10 =
2, =0.34=1.2, s =0.7*4 = 2. 8 and as s has
been aSS|gned two costs, 2 and 2.8, the M NI MUM

s = 2 is used.

If a cost is reduced according to this rule, al
costs calculated fromthis cost are correspondingly
reduced. Thus if the abduction also used a third

i mplication

p[0. 3] &q[0. 8] =>r
that assigned p = 3, then the last inplication
g[0. 3] &s[0. 7] =>p

woul d have to be revisited to assign g = 0.3*3 =
0.9 and s = 0.7*3 = 2.1, and in the case of ¢
this would reduce its previous cost of 1.2 to the
new m ni num 0. 9.

After assigning proposition costs according to the
above rules, the cost of the abduction is the sum
of the costs of its HYPOTHESES plus 0.1 tinmes the
nunber of inplications used in the abduction

Thus if just the first inplication above is used in
the abduction the cost is

5 (i.e., cost of q) + 6 (i.e., cost of p)
+ 0.1 * 1 (nunber of inplications) = 11.1

and if instead the second two inplications are used
the cost is

1.2 (i.e., cost of gq) + 2 (i.e., cost of s)
+ 0.1 * 2 (nunber of inplications) = 3.4

Its al so possible to use NO inplications, in which
case the cost is 10, i.e., the cost of directly
assumng r.

Lastly it is possible to use all three inplica-
tions, in which case the cost is

.2 (i.e., cost of q) + 2 (i.e., cost of s)
+ 0.1 * 3 (nunber of inplications) = 3.5

Noti ce that the hypothesis cost would be the sane
as the hypothesis cost of using just the last two
implications, that is, addition of the first
inmplication to the | ast two does not change the
hypot hesi s cost, but we have added 0.1 tines the
nunber of inplications as a penalty for such
superfluous inplications.

If a m nimum cost abduction is sought, the second
two inplications would be used.

You are being asked to find mninum cost abductions.

abducti on. t xt

10/ 10/ 11 21:45:32 3 of

Propositions are denoted by single LONER CASE | etters,
and nunbers are non-negative floating point nunbers.

In the followi ng P denotes any proposition letter and #
any number.

The input consists of any number of test cases. Each
test case begins with a single line containing the test
case nane. This is followed by any nunber of |ines of
the formats:

Pl #]
P[#] =>P
P[#] & .. &P[#] =>P

and these are followed by a |ine containing just

A line of the first above fornmat defines a proposition
to be explained for which # is its cost. A line of the
second format defines an inplication with a single
hypot hesis, and a line of the third fornat defines an
inmplication with two or nore hypotheses. 1In these |ast
two cases the # s are the weights of the inplication
hypot heses.

There are no space or tab characters in the input
outside the test case nane |ines.

There are at nost 100 inplications in a test case. No
proposition can be in nore than one ‘P[#]’ |ine speci-
fying a proposition to be explained, so there can be
at nost 26 such lines.

I nput ends with an end of file.

For each test case first an exact copy of the test case
name line and then lines with simlar formats to those
used in the input, termnated by a |line containing just
cL The out put describes the m ni num cost abduction
for the given test case input. There is one line for
every abduction hypothesis, and one line for every
implication in the abduction

The output line for each abduction hypothesis has the
format ‘P[#]' which nmeans that P has ni ni mum cost #.

The output line for each inplication in the abduction
has the format ‘P[#]=>P[#]’ or ‘P[#]& ..&P[#]=>P[#],
where the # s have the followi ng neanings. The # for
the conclusion is the mninmumcost assigned to the
conclusion. The # for each hypotheses is the cost
assigned to the hypothesis by the inplication, i.e.
the hypothesis weight tines the cost of the conclusion
This last may NOT be the minimum cost assigned to the
hypot hesis by all inplications.

The nunbers out put nust nust have exactly 2 deci nal
pl aces. There may be no spaces in any output |ine other
than the test case nane lines.

abducti on. t xt

10/ 10/ 11 21:45: 32 4 of

Sanpl e | nput

-- SAMPLE 1 --
r[10]

p[0. 5] &q[0. 6] =>r
p[0. 4] &s[0. 2] =>r
g[0.3]&s[0. 7] =>p

-- SAWPLE 2 --

b[10]

c[20]

n[0. 3] =>p

g[1.4] & [0. 2] =>n
r[{0.5]&n[0.2]=>b
S[1.3]&n1[0.7]& [0. 2] =>p
p[0. 9] =>c

Sanpl e Qut put

-- SAMPLE 1 --

q[1. 20]

s[2. 00]

p[4. 00] &s[2. 00] =>r [10. 00]
q[1. 20] &s[2. 80] =>p[4. 00]

-- SAMPLE 2 --

n[2. 00]

r[5.00]

n[5. 40] =>p[18. 00]

r[5. 00] &n[2. 00] =>b[10. 00]
p[18. 00] =>c[20. 00]

Fil e: abducti on. t xt
Aut hor : Bob Wal ton <wal t on@eas. har vard. edu>
Dat e: Mon Oct 10 21:44: 43 EDT 2011

The aut hors have placed this file in the public donain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $

$Date: 2011/10/11 01:45:32 $
$RCSfil e: abduction.txt,v $
$Revision: 1.11 $

