
problems 10/12/10 20:15:19 1 of 1
Problems Index Tue Oct 12 08:15:19 PM EDT 2010

BOSPRE 2010 PROBLEMS
------ ---- --------

The problems are in approximate order of difficulty,
easiest first.

 problems/escape
 You need to get out more!
 Boston Preliminary 2010

 problems/lexemes
 Words, words, but more than words.
 Boston Preliminary 2010

 problems/bezier
 Curvy is grovy.
 Boston Preliminary 2010

 problems/congruent
 Being similar is sometimes a winner.
 Boston Preliminary 2010

 problems/escape2
 Its getting harder to get out.
 Boston Preliminary 2010

 problems/plans
 Searching for satisfaction.
 Boston Preliminary 2010

 problems/penrosetiling
 Pretty but different.
 Boston Preliminary 2010

escape.txt 10/14/10 04:38:42 1 of 6
Escape From The Maze
------ ---- --- ----

You are stuck in a maze and need to escape. The maze
is constructed from corridors laid out on a grid of
squares. Each corridor is a straight line of squares.
That is, corridors are 1 square wide and are straight
between their ends. All corridors run either horizon-
tally(East/West) or vertically(North/South).

All corridor ends are also an end or middle of another
another corridor. In other words, there are no ‘dead
end’s in the maze.

There is a single monster in the maze pursuing you.
If you and the monster end up on the same square, the
monster will eat you.

Here is an example maze:

 *********** ************Y***********
 * * * * * *
 * * * * * *
 X *************** * *
 * * * * *
 ******** **** * **M***
 * * ***** *
 * * * *

Here X is the exit, Y is you, M is the monster.

You CANNOT see the whole maze. In each of the four
directions you see one of:

 W A wall of the corridor you are on.
 The wall is a boundary of the square
 you are on.
 E The end of a corridor you are on, which
 is just a wall that is the boundary of
 a square you are NOT on.
 X The exit.
 M The monster.

You can move one square along any corridor you are in.
After you move one square the monster moves one square,
and then you can move again. When you move to the exit
square you escape and the adventure is over. If you and
the monster end up on the same square the monster eats
you and the game is over. The monster never exits the
maze.

The monster is a bit skittish, and as a result, if you
suddenly appear in front of it, having come around a
corner, it will back away from you in its next move,
and not eat you. Because of this you have ‘always
escape’ strategies available to you. Otherwise the
monster is fairly purposeful, and will pursue you if
it can see you.

You are required to implement an ‘always escapes’
strategy in a program called ‘escape’.

escape.txt 10/14/10 04:38:42 2 of 6

The Maze Program
--- ---- -------

Your program is named ‘escape’ and runs as a subprocess
of the ‘maze’ program which is provided to you. The
command to run this program is

 maze escape

which invokes the maze program with the ‘escape’ program
as its argument. Additional arguments added at the end
of this command will be passed to the ‘escape’ program
and may be of use for debugging.

As an introduction to this problem, you are given a
sample ‘escape’ program named ‘sample_escape’, which is
described in some detail below. In this program you
just move randomly, so the monster eventually eats you.
To see what is going on, type

 maze sample_escape
 > d1
 > m1234
 > f30
 > f
 > f
 > f
 > f1 1000
 > b1 1
 > b10
 > f
 > f10

(where the line beginning ‘> ’ is a prompt that you do
NOT type). The ‘f’ command runs time forward and the
‘b’ command runs time backward: see below for details.

Escape Program Input
------ ------- -----

The ‘maze’ program writes lines to the ‘escape’ program
and reads lines written by the ‘escape’ program. The
lines written by ‘maze’ and read by ‘escape’ each have
one of the following forms:

 -... A line beginning with ‘-’ indicates the
 start of a new test case.

 nesw n, e, s, and w each denote one of the
 characters W, E, X, M described above
 which tell you what you see in the
 North, East, South, and West directions
 respectively. This line has exactly
 4 characters. E.g., ‘WEMX’ means there
 are corridors to your East, South, and
 West but not North, and in the corridor
 to the South you see the monster while
 in the corridor to the West you see the
 exit.

 p... A line beginning with the letter ‘p’
 contains parameters for your ‘escape’
 program. This is ONLY for debugging.

‘escape’ program input ends with an end of file, at
which point the ‘escape’ program must terminate.

escape.txt 10/14/10 04:38:42 3 of 6

Escape Program Output
------ ------- ------

For each ‘nesw’ line input you must choose a direction
in which to move and output it as the first character on
a single line. The possibilities are ‘N’ for North, ‘E’
for East, ‘S’ for South, and ‘W’ for West. The rest of
the characters on the line are ignored but may be used
for debugging information.

If you make an illegal move (either a line that does not
begin with ‘N’, ‘E’, ‘S’, or ‘W’ or you try to move
through a wall), the programs will crash.

For debugging you may output lines beginning with ‘i’
before you output the direction line above. These lines
will be printed by the ‘maze’ ‘f’ command (see below),
and are otherwise ignored.

If you output a line longer than 80 characters, only the
first 80 characters will be kept.

WARNING: If you are programming in C you must execute

 fflush (stdio);

after writing each line to the standard output, or your
output will be trapped in a buffer and never get to the
maze program. In C++ the ‘endl’ IO manipulator flushes
the buffer and in JAVA ‘println’ flushes the buffer, so
nothing unusual needs to be done for these languages.

When you ran ‘maze sample_escape’ as indicated above,
just before the maze a line appeared which has the
form
 escape-input-line >> escape-output-line

giving the last input line to the ‘escape’ program and
the output line that program produced to cause the last
move.

Your ‘escape’ program must be smart enough to escape the
maze within 20,000 moves. Otherwise you will be ‘OUT
OF TIME’.

Maze Program Input
---- ------- -----

A sequence of command lines each of which contain one of
the following:

 -... A line beginning with ‘-’ indicates the
 start of a new test case. The line can be
 used to hold the name of the test case.

 m S This line creates a maze and starts the
 action. S is an unsigned integer that is
 the seed for a pseudo-random number gener-
 ator that is used to generate the maze and
 set the initial positions of you, the
 exit, and the monster. The pseudo-random
 number generator is also used to make
 choices for the monster during game
 action. S must be unsigned and should not
 have more than 9 digits. Different values
 of S produce different mazes, but because
 its a PSEUDO-random number generator,
 repetitions of this command with the SAME
 value of S always produce the same maze.

 If not in debugging mode, this command
 runs the game action to completion and
 then prints a single line containing just
 your fate: ‘ESCAPED’, ‘EATEN’, or ‘OUT OF
 TIME’.

escape.txt 10/14/10 04:38:42 4 of 6

 If in debugging mode the command prints
 the maze. Then the ‘f’ and ‘b’ commands
 below may be used to run the action for-
 ward and backward.

 p... A line beginning with the letter ‘p’ is
 copied to your ‘escape’ program input, and
 can be used to pass parameters to the
 ‘escape’ program. This is for debugging
 only.

 d1 Turns debugging mode on.
 d0 Turns debugging mode off.

 f N M D Used when the ‘m’ command was given in
 debugging mode. Runs forward N*M steps,
 where a step is a one square move on your
 part followed by a one square move of the
 monster. After every M steps, prints out-
 put, and then pauses D seconds, if D > 0.
 Running stops if you escape or are eaten
 or run out of time.

 Unlike all other numbers input, D is
 floating point. It defaults to the prev-
 ious value given in any ‘f’ or ‘b’ com-
 mand, or to 0.25 if there was no previous
 value. If M is also omitted it defaults
 to the previous value given in any ‘f’ or
 ‘b’ command, or to 1 if there was no pre-
 vious value. If N is omitted, it defaults
 to 1.

 For each group of M steps the following
 are printed. First some blank lines to
 separate things from previous output.
 Then for every step any ‘i’ lines output
 by the ‘escape’ program are printed
 followed by a line of the format:

 input >> output

 giving the input line to and output line
 from the ‘escape’ program for the step.
 Next the maze is printed, followed by a
 status line that is often blank, followed
 by a line that is blank or that begins
 with a prompt for your next command.

 This command can be terminated prematurely
 by typing control-C. Typing control-C at
 any other time terminates the ‘maze’
 program.

 b N M D Just like the ‘f’ command but moves back-
 ward in time instead of forward. However,
 does not print ‘i’ lines or ‘input >>
 output’ lines. Also, if going forward
 after going backward, these lines are
 not printed and the ‘escape’ program is
 not involved until all previously run
 steps have been passed.

When input is from a file, each input line is also
output. When input is from a terminal, a ‘> ’ prompt is
output at the beginning of each input line.

No input line may be longer than 80 characters. Input
ends with an end of file (if you are typing input you
can produce an end of file by typing control-D).

escape.txt 10/14/10 04:38:42 5 of 6

Maze Program Output
---- ------- ------

If not run from a terminal, ‘maze’ outputs a copy of its
input. It also always outputs the information described
under the ‘m’, ‘f’, and ‘b’ commands above.

Sample Escape Program
------ ------ -------

You are given a program, ‘sample_escape’, that can be
used to see what ‘maze’ does. ‘sample_escape’ just
executes the following:

 loop:
 read an input line
 on end of file exit program
 if line is a ‘-’ line ignore it
 if the line is an nesw line:
 pick a direction at random in which there is
 no wall (any non-W direction)
 output a line indicating the picked
 direction
 if a line is a ‘p’ line, echo the line inside an
 ‘i’ line, but otherwise ignore the ‘p’ line

Suggestions for running the ‘sample_escape’ program are
given above.

Sample Input
------ -----

-- SAMPLE 1 --
m1234

Sample Output
------ ------

-- SAMPLE 1 --
m1234
ESCAPED

Notes

If the monster is on the same square as the exit, you
will see the monster and not the exit. Debugging
displays will also show ‘M’ for the square and not ‘X’.

If you want to write your own version of ‘sample_escape’
for fun or profit, you may find the following pseudo-
random number generators useful:

C: #include <stdlib.h>
 . . .
 int i = random();

C++: #include <cstdlib>
 . . .
 int i = random();

Java: import java.util.*;
 . . .
 static Random r = new Random (123);
 . . .
 int i = r.nextInt();

escape.txt 10/14/10 04:38:42 6 of 6

File: escape.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Thu Oct 14 04:38:06 EDT 2010

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2010/10/14 08:38:42 $
 $RCSfile: escape.txt,v $
 $Revision: 1.18 $

lexemes.txt 10/12/10 18:41:13 1 of 2
Lexemes

You have been asked to scan lines of input text into
lexemes.

For example, given the input line

 x = 5*y + "hello world";

you are to output

 |x| |=| |5|*|y| |+| |"hello world"|;|
 s w o w n o s w o w qqqqqqqqqqqqq p

The definitions are

 <lexeme> ::= <symbol>
 | <whitespace>
 | <operator>
 | <number>
 | <quoted-string>
 | <punctuation>
 | <illegal>
 <symbol> ::= <letter><letter-or-digit>*
 <whitespace> ::= <single-space-character>+
 <operator> ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘=’ | ‘.’
 <number> ::= <digit>+ <fraction-option>
 <fraction-option> ::= <empty> | ‘.’ <digit>+
 <quoted-string> ::=
 ‘"’ <character-representative>* ‘"’
 <character-representative> ::=
 <character-except-"-or-\> | ‘\"’ | ‘\\’
 <punctuation> ::= ‘,’ | ‘(’ | ‘)’ | ‘;’

 <illegal> ::=
 <any-character-that-starts-no-other-lexeme>

Here <x>* means zero or more <x>’s, <x>+ means one or
more <x>’s, and <empty> means the empty character
string.

Given a position in the input, the next lexeme is the
LONGEST lexeme that can be found starting at that
position. E.g., ‘8.1’ scans as one number lexeme and
does NOT include a ‘.’ operator.

If no other lexeme can be found, the next character is a
1-character ‘illegal lexeme’. Note that this produces
some idiosyncratic results. For example, if you forget
the closing " in a quoted string, there is no quoted
string lexeme, and the " starting the string becomes a
1-character illegal lexeme. Similarly if you put an
illegal character representative, such as \h, in a
quoted string. To be sure you implement the above rules
precisely, you should carefully check that your solution
gets the Sample Output below when given the Sample Input
below.

Input

For each of several test cases two lines. The first
line is the test case name. The second line is the
line you are to scan into lexemes.

There are NO tab characters in the input, so the only
space characters in the input are single space charac-
ters and line ending line feeds. No line is longer
than 80 characters (not counting line feeds).

Input ends with an end of file.

lexemes.txt 10/12/10 18:41:13 2 of 2

Output

For each test case, first an exact copy of the test case
name line. Then two lines. The first is a copy of the
input line to be scanned with ‘|’ marks inserted at the
beginning and end and in between scanned lexemes. The
next line has under each lexeme character a letter
giving the lexeme type. This letter is simply the first
letter of the lexeme type name (i.e., ‘s’ for symbol,
‘o’ for operator, ‘i’ for illegal lexeme, etc.).

Remember to test your program on the Sample Input and
be sure its output EXACTLY matches the Sample Output.
Note that numbers and symbols can be arbitrarily long,
and numbers CANNOT begin or end with ‘.’. Also illegal
quoted strings are NOT recognized as quoted strings, and
their initial " is treated as an illegal lexeme.
Lastly, illegal lexemes are all 1-character lexemes,
like punctuation and operators.

Sample Input
------ -----

-- SAMPLE 1 --
x = 5y21 + 3*x+foo("hi\\n",7.8);
-- SAMPLE 2 --
7.8 7. 8 7 .8 01234567890123456789.x!!
-- SAMPLE 3 --
?"He said: \"Ha\"?\\n" + "He He\n" + "Ho"

Sample Output
------ ------

-- SAMPLE 1 --
|x| |=| |5|y21| |+| |3|*|x|+|foo|(|"hi\\n"|,|7.8|)|;|
 s ww o ww n sss w o w n o s o sss p qqqqqqq p nnn p p
-- SAMPLE 2 --
|7.8| |7|.| |8| |7| |.|8| |01234567890123456789|.|x|!|!|
 nnn w n o w n w n w o n w nnnnnnnnnnnnnnnnnnnn o s i i
-- SAMPLE 3 --
|?|"He said: \"Ha\"?\\n"| |+| |"|He| |He|\|n|" + "|Ho|"|
 i qqqqqqqqqqqqqqqqqqqqq w o w i ss w ss i s qqqqq ss i

File: lexemes.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Tue Oct 12 18:39:49 EDT 2010

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2010/10/12 22:41:13 $
 $RCSfile: lexemes.txt,v $
 $Revision: 1.8 $

bezier.txt 10/08/10 09:03:33 1 of 3
Bezier Curve
------ -----

A Bezier Curve is a smooth approximation to a segmented
line through the points P1, P2, ..., Pn. The segmented
line goes straight from P1 to P2, then straight on to
P3, etc., and so is composed of a sequence of straight
line segments. The Bezier Curve, however, is very
smooth, although it starts at P1, ends at Pn, and very
roughly approximates the segmented line.

The points on the Bezier Curve are designated

 B(t, P1, P2, P3, ..., Pn)

where t varies from 0 through 1.

If there are only two points, the Bezier Curve is simply
the straight line between them given by

 B(t, P1, P2) = (1-t)*P1 + t*P2

If there are n>2 points the Bezier Curve for n points is
computed from two Bezier Curves for n-1 points as
follows

 B(t, P1, P2, P3, ..., Pn) =
 (1-t) * B(t, P1, P2, P3, ..., P(n-1))
 +
 t * B(t, P2, P3, P4, ..., Pn)

The points P1, P2, ..., Pn are called ‘control points’.
The Bezier Curve computed from them starts at P1 and
ends at Pn, and is tangent at its start to the straight
line P1-P2 and at its end to the straight line P(n-1)-
Pn. However, the Bezier Curve often does not get close
to non-end control points.

You have been asked to compute and plot Bezier Curves
and plot their control points.

Input

For each of several test cases, a single line containing
the test case name, followed by one or more lines
containing the numbers:

 m X Y n P1x P1y P2x P2y P3x P3y ... Pnx Pny

These numbers may be on a single line or spread out
among several lines, and may be aligned in any columns
of the input lines.

m is the number of points of the Bezier Curve to be
computed, the graph has X columns and Y rows, n is the
number of control points, and (P1x,P1y), (P2x,P2y), ...
are the control points. 1 <= m; 1 <= X <= 80;
1 <= Y <= 40; 2 <= n <= 50; 0 <= Pjx <= X-1;
0 <= Pjy <= Y-1. m, X, Y, and n are integers while
Pjx and Pjy may be floating point.

No input line is longer than 80 characters. The input
ends with an end of file.

Output

For each test case one line containing an exact copy of
the test case name input line, followed by ceiling(m/5)
lines containing m Bezier Curve coordinate pairs,
followed by Y lines containing a graph of the Bezier
Curve.

bezier.txt 10/08/10 09:03:33 2 of 3

The lines containing the Bezier Curve coordinates
each have the format:

 xx.x yy.y xx.x yy.y xx.x yy.y xx.x yy.y xx.x yy.y

where xx.x denotes an x-coordinate value and yy.y de-
notes a y-coordinate value, each printed in 5 columns
with exactly one decimal place (all correct numbers will
be >= 0 and < 100). There are 5 (x,y) pairs per line
(maybe less on the last line), and these are in order
the B(t,...) values for t = 0, 1/m, 2/m, 3/m, ...,
(m-1)/m (there is NO value for t = 1).

The graph is Y lines each with X columns. For each
B(t,...) point (x,y), an asterisk * is placed in

 row = Y - floor (y + 0.5)
 column = 1 + floor (x + 0.5)

where rows are numbered 1, 2, 3, ... from the top and
columns are numbered 1, 2, 3, ... from the left. For
each of the initial points (Pix,Piy), a plus sign + is
then placed in

 row = Y - floor (Piy + 0.5)
 column = 1 + floor (Pix + 0.5)

overlaying any * that is there.

Thus the lower left corner of the graph corresponds to
(x,y) = (0,0), and to compute the graph location of
(x,y) the values of x and y are both rounded to the
nearest integer.

Note: you MUST do the rounding correctly or your graph
will have misplaced ‘*’s or ‘+’s and your output will be
scored as INCORRECT. The judge’s input is chosen so
there will be no graphed x or y values extremely near
the midpoint between two integers.

Sample Input
------ -----

-- SAMPLE 1 --
6 21 7
 4 0 0 4 2 8 4 12 6
-- SAMPLE 2 --
40 41 16 16
 20 0
 0 5 0 10
 10 15 14 15 15 15
 20 6 20 5 20 5 20 6
 25 15 26 15 30 15
 40 10 40 5
 20 0

bezier.txt 10/08/10 09:03:33 3 of 3

Sample Output
------ ------

-- SAMPLE 1 --
 0.0 0.0 2.0 1.0 4.0 2.0 6.0 3.0 8.0 4.0
 10.0 5.0
 +
 *
 +
 *
 +
 *
+
-- SAMPLE 2 --
 20.0 0.0 13.7 1.9 9.7 3.7 7.3 5.5 6.2 7.1
 6.1 8.6 6.6 9.8 7.5 10.8 8.6 11.4 9.8 11.8
 11.1 12.0 12.4 11.9 13.5 11.6 14.6 11.1 15.6 10.6
 16.5 10.0 17.3 9.5 18.1 9.0 18.7 8.6 19.4 8.4
 20.0 8.3 20.6 8.4 21.3 8.6 21.9 9.0 22.7 9.5
 23.5 10.0 24.4 10.6 25.4 11.1 26.5 11.6 27.6 11.9
 28.9 12.0 30.2 11.8 31.4 11.4 32.5 10.8 33.4 9.8
 33.9 8.6 33.8 7.1 32.7 5.5 30.3 3.7 26.3 1.9
 + ++ ++ +

 *** * * ***
 * * ** ** * *
+ * * * * +
 * *** *** *

 * *
 +
+ * + * +
 * *

 * *

 +

File: bezier.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Thu Oct 7 02:54:26 EDT 2010

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2010/10/08 13:03:33 $
 $RCSfile: bezier.txt,v $
 $Revision: 1.8 $

congruent.txt 10/12/10 20:39:48 1 of 3
Congruent Polygons
--------- --------

You have been asked to determine whether or not two
polygons are congruent, and if so, how to transform
the first polygon in order to make it match precisely
the second polygon. The permitted transformation
consists of an optional reflection about the X-axis
followed by a rotation counter-clockwise about the
origin followed by a translation.

Input

For each of several test cases, a line containing just
the test case name, followed by lines describing the
two polygons. Each polygon description is N+1 numbers,
where N is the number of vertices in the polygon.
The first number is N itself. The rest of the numbers
are x,y pairs for each vertex. Thus the format of a
polygon description is

 N v1x v1y v2x v2y ... vNx vNy

except the numbers may be distributed in any fashion
across one or more lines.

The polygon vertices are always given in clockwise
order. The angle between successive polygon sides is
always different from 180 degree, so no vertices are
superfluous. The two polygons have the SAME number of
vertices, N. 3 <= N <= 100.

To make things easier, the first vertex of the first
polygon is always (0,0), the origin.

Lastly, all XY-coordinates have exactly 6 decimal
places.

No input line is longer than 80 characters. Input ends
with an end of file.

Output

For each test case, two lines. First, an exact copy of
the test case name line. Then either a line containing
just

 not congruent

or a line of the format

 r angle x y

which defines a transformation that carries the first
polygon onto the second polygon. Here

 r = I meaning do NOT reflect the first polygon
 = R meaning DO reflect the first polygon
 about the X-axis; the reflection of
 (x,y) is (x,-y).
 angle is the angle measured in DEGREES to ro-
 tate the first polygon counter-clock-
 wise about the origin (the first vertex
 of the polygon)
 x y are the amounts to add to the x and y
 coordinates of the vertices to translate
 the first polygon; thus the first vertex
 (0,0) is translated to (0+x,0+y) = (x,y)

The transformation defined consists of first an optional
reflection about the X-axis, then a counter-clockwise
rotation about the origin, and lastly the translation.

congruent.txt 10/12/10 20:39:48 2 of 3

The angle, x, and y may be printed to any number of
decimal places, or may be printed in C++ scientific
notation. However, if these values are rounded to too
few decimal places, the translation they define may
become unacceptable (see discussion below), so we
suggest these values be output to 6 decimal places.

There is a technical problem related to the fact that
vertex input coordinates are only accurate to + or -
0.0000005, given that they have only 6 decimal places.
We deal with this as follows.

For any transformation we define the error of the
transformation to be the maximum absolute value of the
difference between any input second polynomial vertex
coordinate and the coordinate value of the transformed
corresponding first polynomial vertex. We define a
transformation to be acceptable if its error is <= 0.001
(which is 2,000 times the input error). We define two
polygons to be congruent if there is an acceptable
transformation. Then for judging safety, the judge’s
input data are carefully chosen so that if the polygons
are congruent there are obvious transforms with errors
well below 0.001, and if the polygons are not congruent
all possible transforms have errors well above 0.001.
In other words, there are no ‘close calls’ in the
judging input.

If the polygons are congruent you must output an accep-
table transform. If there is more than one, output only
one.

Sample Input
------ -----

-- SAMPLE 1 --
5
 0.000000 0.000000 0.000000 8.000000
 5.000000 6.000000 8.000000 8.000000
 8.000000
 0.000000
5
 4.000000 5.000000 -4.000000 5.000000
 -2.000000 10.000000 -4.000000 13.000000
 4.000000 13.000000
-- SAMPLE 2 --
5
 0.000000 0.000000 0.000000 8.000000
 5.000000 6.000000 8.000000 8.000000
 8.000000 0.000000
5
 -4.000000 13.000000 4.000000 13.000000
 2.000000 10.000000 4.000000 5.000000
 -4.000000 5.000000
-- SAMPLE 3 --
5
 0.000000 0.000000 0.000000 8.000000
 5.000000 6.000000 8.000000 8.000000
 8.000000 0.000000
5
 4.000000 5.000000 -4.000000 5.000000
 -6.000000 10.000000 -4.000000 13.000000
 4.000000 13.000000

congruent.txt 10/12/10 20:39:48 3 of 3

Sample Output
------ ------

-- SAMPLE 1 --
I 90.000000 4.000000 5.000000
-- SAMPLE 2 --
R 90.000000 -4.000000 5.000000
-- SAMPLE 3 --
not congruent

File: congruent.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Tue Oct 12 20:28:22 EDT 2010

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2010/10/13 00:39:48 $
 $RCSfile: congruent.txt,v $
 $Revision: 1.11 $

escape2.txt 10/14/10 07:58:14 1 of 4
Escape From The Maze: Part II
------ ---- --- ----- ---- --

The maze from the ‘escape’ problem has been upgraded to
be more difficult.

The big new difficulty is that more than one monster is
now present, and you can be trapped. Note that two
monsters cannot occupy the same square (they will not
fit).

However, there is some good news. First, you now can
hurl immobilizing juice at a monster to stop it from
doing anything for a while. Exact rules for this are
below.

And in addition to seeing whether there is a wall,
corridor end, exit, or monster in a particular
direction, you can see how far away these things are.

You have a flask which can hold any amount of immobil-
izing juice. You can remove N units of this juice from
the flask and hurl it at any monster you can see. This
will immobilize the monster for N moves. You can occupy
the same square as in immobilized monster WITHOUT being
eaten.

Jugs of immobilizing juice are on certain squares of the
maze, and when you occupy such a square any juice in the
square’s jug will be automatically transferred to your
flask. Furthermore, the jugs refill at the rate of one
juice unit per R moves you make (1 <= R <= 5), so if you
come back to a jug you will get more juice. You need
not hurl the entire contents of your flask at a monster.

Each jug has a maximum capacity of from 1 to 9 juice
units. Jugs are represented in pictures of the maze by
the digits 0 through 9 which tell how much juice is
currently in each jug. A jug cannot occupy the exit
square.

To make things more interesting, the sizes of the the
mazes have been increased for this problem. A maze
can be at most 40 lines tall and 80 columns wide. You
should set your terminal window to 48 lines tall times
80 columns wide to use debugging mode for maze2. Then
you can type

 maze2 sample_escape2
 > d1
 > m5 5 0 2 1234
 > f30
 > f
 > f
 > f1 1000
 > b1 1
 > b10
 > f
 > f10

to get a feel for the problem.

There is no infallible solution to this problem. In
order to make it tractable, a new j command is added
to the maze program: see below.

escape2.txt 10/14/10 07:58:14 2 of 4

The Maze Program
--- ---- -------

In the same fashion as the ‘escape’ program, you test
your program by running

 maze2 escape2

The ‘maze2’ program has the same commands as the ‘maze’
program except for one command that is changed and two
new commands. The changed and new commands are:

 m M J F R S
 Four parameters, M, J, F, and R, are added to
 the maze creation command. M is the number of
 monsters, J the number of jugs, F the number of
 potion units initially in your flask, and R the
 number of moves you make before one unit of
 potion is added to a jug you have emptied. S is
 the random number generator seed as before.

 In addition, if you give NO parameters, but just
 input ‘m’, the parameters are set from the
 FAILED_MAZE file written by the ‘j K’ command
 below.

 j Your program is judged, using the same mazes
 (i.e., ‘m’ command parameters) as the judge will
 use to score your program. If your program
 escapes a sufficient number of these mazes in a
 sufficiently small number of total moves, this
 command will print ‘SUCCESS!’. If not, it will
 print ‘FAILURE!’. The command will also print
 the number of mazes you escaped, your total
 number of moves, and the numbers required for
 success.

 A submission for which the ‘j’ command produces
 ‘SUCCESS!’ will be scored CORRECT, and a sub-
 mission for which ‘j’ produces ‘FAILURE!’ will
 be scored INCORRECT.

 Note that debugging is effectively off during
 the ‘j’ command (so there is no way of seeing
 all the mazes you succeeded on).

 j K
 Same as j but the command stops on the K’th maze
 you fail to escape from and writes the ‘m’ com-
 mand for this maze in the FAILED_MAZE file,
 which can be used by the ‘m’ command above to
 permit you to debug your program on the first
 failed maze.

Also, the mazes output by the ‘maze2’ program have three
features the ‘maze’ program output does not have.
First, a square with a potion jug has a digit, ‘0’
though ‘9’, indicating how full the jug is (the capacity
of the jug is not indicated, but the jugs will be at
capacity initially and will stop filling when they reach
capacity). Second, an immobilized monster displays as
an ‘I’ instead of an ‘M’. And third, several things
can be on the same square, and in that case the priority
of display from lowest to highest is ‘Y’, ‘X’ or jug,
‘I’ or ‘M’. Thus if you and an immobilized monster
occupy the same square, you will see an ‘I’ in that
square.

The number of mazes tested by the ‘j’ command is large
to prevent you from using ‘j’ to extract all the judge’s
maze parameters within the time constraints of the con-
test. The judge’s solution has modest intelligence
of a straight forward kind. BUT, to succeed in this
problem you should have a plan for increasing the intel-
ligence of your escape program as much as necessary.

escape2.txt 10/14/10 07:58:14 3 of 4

Note also that there is no limit on the number of moves
you may make on any given maze, and no OUT OF TIME
result for a single maze, but there is instead a limit
on the number of moves you may make for all mazes tested
by the ‘j’ command.

Escape2 Program Input
------- ------- -----

The ‘-...’ and ‘p...’ input lines are as for ‘escape’.
A new ‘m’ input line has been added, and the ‘nesw’ line
has been changed. The new or changed lines are:

 m F R F is the number of units of potion
 initially in your flask, and R is the
 number of moves you must make in order
 for one unit of potion to be put in any
 jug that is not full.

 Note: you are NOT told M, the number of
 monsters in the maze, or J, the number
 of jugs in the maze.

 neswx n, e, s, and w each denote one of the
 following STRING of characters:

 W
 #E #J#E
 #X #J#X
 #M #J#M

 Here the #’s stand for unsigned decimal
 integers. #E, #X, #M means there are #
 squares until the the corridor ends or
 there is an exit or there is a monster.
 # == 0 means the exit or monster is in
 the next square; 0E is never used (W is
 used instead). You cannot see beyond an
 exit or monster.

 #J means there are # squares until there
 is a jug. You can see corridor ends,
 exits, and monsters beyond a jug, but
 you cannot see another jug beyond a jug.

 You are NOT told whether or not the mon-
 ster is mobile.

 #M does not tell you about any immobil-
 ized monster in the same square as you,
 and #J does NOT tell you about any jug
 in the same square as you (but see #F
 below). If a square holds a monster and
 something else you see only the monster.

 x is one of the following strings of
 characters:

 "" (empty string)
 #F

 #F means there is a jug on your square
 from which # units of potion have just
 been transferred to your flask.

 There are no space characters in a neswx
 line.

escape2.txt 10/14/10 07:58:14 4 of 4

Escape2 Program Output
------- ------- ------

For each ‘neswx’ line input you must output a line with
one of the following formats:

 d #dd

Here ‘d’ is one of the direction characters, N, E, S, or
W, as for ‘escape’. The last ‘d’ is the direction in
which you want to move. A preceding ‘#d’ means you
want to hurl # units of potion in direction d. Thus
on input

 W4MW10E

you might respond

 2EW

to hurl 2 units of potion at the monster to your East
and then move yourself one square West.

You may put debugging information on these lines after
the character indicating the direction in which you
move. You must not put any space characters before
this character. If you output a line with more than
80 characters, only the first 80 will be kept.

If you hurl potion in a direction in which there is no
monster, the potion will have no effect. If you try to
hurl more units of potion than you have, all the potion
that you have will be hurled. In particular, if your
flask is empty, hurling potion has no effect.

File: escape2.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Thu Oct 14 07:52:50 EDT 2010

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2010/10/14 11:58:14 $
 $RCSfile: escape2.txt,v $
 $Revision: 1.15 $

plans.txt 10/14/10 09:30:40 1 of 4
Making Plans
------ -----

You are being asked to make minimal plans.

These plans concern a world that is described by propo-
sitions that are either true or false. There are 26
possible propositions, one for each lower case letter of
the alphabet.

For each proposition ‘p’ there are two ‘literals’ that
can be used to describe the world: ‘+p’ is a literal
that means proposition p is true, and ‘-p’ is a literal
that means p is false. The negation of a literal is the
same literal with the sign switched, i.e., -p is the
negation of +p and +p is the negation of -p.

Plans consist of actions. An action has the form

 name:{pre-conditions}=>{post-conditions}

where ‘name’ is a natural number, pre-conditions is a
list of literals that must be true in order for the
action to be taken, and post-conditions is a list of
literals that will be true after the action has been
taken. An action is described on a single line which
is written without any spaces; for example:

 7:+p-q=>-p+q+r+t

A set of literals is conflicting if for some p both +p
and -p are in the set. The pre-conditions of an action
must be non-conflicting, and similarly the post-condi-
tions of an action must be non-conflicting.

A plan is:

(1) A set ACT of actions.
(2) A strict partial order << on the set of actions ACT.
 Intuitively m<<n means m comes before n.
(3) A set of causal links. A causal link is denoted by
 m=>n:c
 where m and n are names of actions in ACT, m is an
 action to be taken to satisfy the pre-condition c
 of n, and c is a literal in the post-conditions of
 m and the pre-conditions of n. m=>n:c necessarily
 implies m<<n.

A strict partial order is a binary relation that is
transitive and anti-symmetric. Antisymmetry means that
m<<n implies NOT n<<m.

An action b is said to be a ‘threat’ to causal link
m=>n:c if the negation of c is a post-condition of b,
and b does not equal m or n. If b is a threat to
m=>n:c, then either b<<m or n<<b must be true or the
plan is inconsistent.

In order to define the initial state of the world and
the final or goal state that our plan seeks we introduce
two special actions, the initial action 0 and goal
action 1, which have the forms:

 0:=>{initial-conditions}
 1:{goal-conditions}=>

0, the initial action, has empty pre-conditions and its
post-conditions represent the initial state of the
world. 1, the goal action, has empty post-conditions,
and its pre-conditions represent the desired or goal
state of the world. Every plan must contain the 0 and 1
actions. 0<<1 is required, and 0<<m<<1 is required for
all actions m in the plan other than 0 or 1.

plans.txt 10/14/10 09:30:40 2 of 4

A plan is consistent if its strict partial order is
really a strict partial order and if for every causal
link m=>n:c in the plan and every action b in the plan
that is a threat to that link, either b<<m or n<<b.

A plan is complete if it includes 0 and 1, 0<<1 and for
every other action m in the plan 0<<m<<1, and for every
action n in the plan and every literal c in the pre-con-
dition of n, there is EXACTLY ONE causal link m=>n:c in
the plan.

Note that an action can be used at most once in a plan;
we do NOT permit actions to be replicated. Also note
that there can be two causal links in a plan of the
forms m=>n:c1 and m=>n:c2; that is, m=>n can appear more
than once in a plan but with DIFFERENT literals c1 and
c2.

You are being asked to find minimal complete, consistent
plans.

Input

For each of several test cases, a line containing just
the test case name, followed by any number of lines
each describing one action, followed by a line contain-
ing just ‘.’.

There is one action named ‘0’ and one named ‘1’ in each
test case. All other action names are unique and are
natural numbers. The smallest natural number N such
that all action names are in the range 0 .. N-1 is
implicitly input and is used to define the output (see
below).

3 <= N <= 200.

There is no whitespace in any input line other than the
test case name line. Input lines are at most 80 char-
acters long. Input ends with an end of file.

Output

For each test case, first an exact copy of the test case
name line, followed by a description of a minimal con-
sistent complete plan for the test case, or a single
line containing EXACTLY ‘no plan’, meaning that no con-
sistent complete plan is possible for the test case.

The description of a minimal plan begins with N lines
each containing N characters that describe the strict
partial order, followed by lines each describing one
clausal link in the plan, followed by a line con-
taining just ‘.’ See ‘Input’ above for a definition
of N.

In the N lines describing the strict partial order,
column n of line m is

 ’1’ if m and n are in the plan and m<<n

 ’0’ if m and n are in the plan and NOT m<<n

 ’0’ if either m or n is NOT in the plan

Here lines are numbered 0, 1, 2, ... from top to bottom,
and columns are numbered 0, 1, 2, ... from left to
right. If no action named m is in the input, m is
treated as an action not in the plan for the purposes
of this paragraph (you can treat m as an action with no
pre- or post-conditions).

The lines describing the causal links each have the
form ‘m=>n:c’.

plans.txt 10/14/10 09:30:40 3 of 4

There are no spaces in any output lines except test case
name lines and ‘no plan’ lines.

The plan output must be minimal in the following senses.
First, it must contain a minimum number of actions.
Second, among all plans with the minimum number of
actions, it must have the minimum number of clausal
links. Third, among all plans with the minimum number
of actions and minimum number of clausal links, it must
have the minimum number of << relations (literally, the
minimum number of ‘1’s in the strict partial order de-
scription).

Sample Input
------ -----

-- SAMPLE 1 --
2:+b=>-b+c
3:+c=>-c+d
4:+c=>+f
0:=>+b
1:+d=>
.
-- SAMPLE 2 --
0:=>+c-d
1:-f+c-g=>
2:-h=>+k-a
3:+b=>-m-c
4:+c=>+b-c
5:-d=>+d-f
6:-d+c=>+f+k
7:+f=>+g+b
8:-k+h=>-h+m
9:+g+c=>-f+m
10:+g=>-g-b
.

Sample Output
------ ------

-- SAMPLE 1 --
01110
00000
01010
01000
00000
3=>1:+d
2=>3:+c
0=>2:+b
.
-- SAMPLE 2 --
01000111001
00000000000
00000000000
00000000000
00000000000
01000000000
01000101001
01000100001
00000000000
00000000000
01000000000
0=>1:+c
5=>1:-f
0=>5:-d
10=>1:-g
7=>10:+g
6=>7:+f
0=>6:+c
0=>6:-d
.

plans.txt 10/14/10 09:30:40 4 of 4

File: plans.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Thu Oct 14 09:30:13 EDT 2010

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2010/10/14 13:30:40 $
 $RCSfile: plans.txt,v $
 $Revision: 1.9 $

penrosetiling.txt 10/14/10 09:51:26 1 of 3
Penrose Tiling
------- ------

Sir Roger Penrose investigated aperiodic tilings of the
plane in the 1970’s. These tilings are generated
from a small number of finite shapes by following a set
of rules, but no translation of a tiling is identical to
the tiling, hence the designation ‘aperiodic’.

Penrose rhombus tilings are generated from a pair of
rhombi called ‘t’, the ‘thin’ rhombus, and ‘T’, the
‘thick’ rhombus. All sides of these are unit length.
The angles of t are 36 and 144 degrees, and those of T
are 72 and 108.

The sides of the rhombi also need to be labeled, so
we give the following algorithms for drawing them using
a pen:

 for t, thin rhombus:
 draw a straight line of unit length labeled +1
 turn left 1*36 = 36 degrees
 draw a straight line of unit length labeled -1
 turn left 4*36 = 144 degrees
 draw a straight line of unit length labeled +2
 turn left 1*36 = 36 degrees
 draw a straight line of unit length labeled -2
 turn left 4*36 = 144 degrees
 you are now back in your starting position

 for T, thick rhombus:
 draw a straight line of unit length labeled +1
 turn left 2*36 = 72 degrees
 draw a straight line of unit length labeled +2
 turn left 3*36 = 108 degrees
 draw a straight line of unit length labeled -2
 turn left 2*36 = 72 degrees
 draw a straight line of unit length labeled -1
 turn left 3*36 = 108 degrees
 you are now back in your starting position

The rhombi must be fit together so:

 1. The rhombi are rotated and/or translated but NOT
 flipped over.

 2. Two rhombi may not intersect. This means that
 their intersection as sets, including boundaries,
 must not contain any points EXCEPT for those in
 shared vertices and shared edges.

 3. When an edge is shared between two rhombi, the
 sum of the two labels of the edge must be 0.
 E.g., a +2 edge from one rhombus may be shared
 with a -2 edge from another rhombus, but NOT with
 a +2 or -1 or +1 edge.

 4. There are no holes in the tiling.

In this problem you are given a proposed finite Penrose
rhombic tiling and you are asked to determine whether
it follows all the above rules.

We need a way to describe a finite Penrose rhombic
tiling. We do this by placing the tiles down on the
xy-plane so that each tile but the first shares an edge
with one of the tiles laid down so far.

The first tile is always a T-tile with its +1 edge dir-
ected from (0,0) to (1,0) and its +2 edge directed from
(1,0) to (x,y) with x>1, y>0. This is referred to as
the ‘standard position’ for the first tile, which is
also tile 1 in a our tile labeling scheme that numbers
the n tiles laid down so far from 1 through n.

penrosetiling.txt 10/14/10 09:51:26 2 of 3

The position of the n+1’st tile is given by the line

 k j e

where

 k is the kind of tile, either ‘t’ or ‘T’
 j is the number of a previous tile that is to
 share an edge with the new tile; 1 <= j <= n
 e is the label (+1, -1, +2, or -2) of the edge
 of tile j that is to be shared with the new
 tile, respecting the rule about the sum of
 shared edge labels being zero

Thus the line ‘t 7 -2’ says to lay a t-tile so that its
+2 edge is shared with the -2 edge of the 7’th tile
laid.

Input

The input consists of test cases. Each test case begins
with a line containing the name of the test case. This
is followed by any number of lines each containing a
description ‘k j e’ of another tile to be laid to make a
tiling pattern. The first tile of the pattern is in
standard position, and the i’th line of the form ‘k j e’
describes how to lay the i+1’st tile. After these lines
there is a line containing just ‘.’, which is the last
line of the test case.

 maximum number of tiles <= 10,000

 for each tile vertex (x,y):
 -100 <= x <= +100
 -100 <= y <= +100

Output

For each test case, first output an exact copy of the
test case name line, and then output just one line in
one of the following formats:

 tile # intersects tile #
 tile # edge # is shared with tile # edge #
 there are # holes
 tiling OK

Here the #’s are integers that are tile labels, edge
labels, or counts. The first line is output if two
tiles intersect; the second if two share edges have
labels not summing to 0. If the tiling violates the
rule against intersection AND the rule against edge
labels not summing to 0, then either of the first two
lines may be output -- only one violation is to be
reported.

However, reporting holes must ONLY be done if there are
NO intersection or edge label sum violations.

Printing Input
-------- -----

As a debugging aid, the command

 print_penrosetiling foo.in

will print a picture of the tiling described in foo.in.
The file sample_input.ps contains the result for the
sample input.

penrosetiling.txt 10/14/10 09:51:26 3 of 3

The labels in the picture are represented by single
arrows (+1, -1) or double arrows (+2, -2) going around
the rhombus boundary in the counter-clockwise (+1, +2)
or clockwise (-1, -2) directions. They are offset so
that usually if a shared edge has labels not summing to
zero this will be visible in the picture. But their
are perverse cases; consider:

 -- PERVERSE CASE --
 t 1 +1
 T 2 -1
 .

Sample Input
------ -----

This is available in the file sample_input.in.

Sample Output
------ ------

-- PENROSE TILING SAMPLE 1 --
tiling OK
-- PENROSE TILING SAMPLE 2 --
tile 1 and tile 7 intersect

File: penrosetiling.txt
Author: Bob Walton <walton@seas.harvard.edu>
Date: Thu Oct 14 09:48:57 EDT 2010

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2010/10/14 13:51:26 $
 $RCSfile: penrosetiling.txt,v $
 $Revision: 1.13 $

