probl ens 10/ 12/ 10

20: 15: 19

1 of 1

Pr obl ens | ndex Tue Cct 12 08:15:19 PM EDT 2010

BOSPRE 2010 PROBLEMS

The problens are in approxinmate order of difficulty,
easi est first.

pr obl ens/ escape
You need to get out norel!l
Boston Prelimnary 2010

probl ens/ | exenes
Words, words, but nore than words.
Boston Prelimnary 2010

pr obl ens/ bezi er
Curvy is grovy.
Boston Prelimnary 2010

pr obl enms/ congr uent
Being simlar is sometines a w nner.
Boston Prelimnary 2010

pr obl ens/ escape2
Its getting harder to get out.
Boston Prelimnary 2010

pr obl ens/ pl ans
Searching for satisfaction
Boston Prelimnary 2010

probl enms/ penrosetiling
Pretty but different.
Boston Prelimnary 2010

escape. t xt

10/ 14/ 10 04:38:42 1 of

Escape From The Maze

You are stuck in a naze and need to escape. The mmze
is constructed fromcorridors laid out on a grid of
squares. Each corridor is a straight |ine of squares.
That is, corridors are 1 square wi de and are strai ght
between their ends. Al corridors run either horizon-
tally(East/West) or vertically(North/South).

All corridor ends are also an end or m ddl e of another
another corridor. 1In other words, there are no ‘dead
end’s in the nmze.

There is a single nonster in the maze pursuing you.
If you and the nonster end up on the sane square, the
nonster will eat you.

Here is an exanple nmaze

kkkkkkkhkkk*x ************Y***********
* * * * * *
* * * * * *
X kkkkhkkkhkkkkhkkkkk*k * *
* * * * *
*kkkkkk*x * k kk * **M**

* * *kkk*k *

* * * *

ER R R R R R I I IR T

Here X is the exit, Yis you, Mis the nonster.

You CANNOT see the whole maze. |In each of the four
directions you see one of:

W A wall of the corridor you are on
The wall is a boundary of the square
you are on.

E The end of a corridor you are on, which

is just a wall that is the boundary of
a square you are NOT on.

X The exit.

M The nonster.

You can nove one square along any corridor you are in
After you npve one square the nonster nobves one square,
and then you can nove again. Wen you nmove to the exit
square you escape and the adventure is over. |If you and
the nonster end up on the sanme square the nonster eats
you and the game is over. The nonster never exits the
maze.

The nonster is a bit skittish, and as a result, if you
suddenly appear in front of it, having come around a
corner, it will back away fromyou in its next nove
and not eat you. Because of this you have *al ways
escape’ strategies available to you. Oherw se the
nonster is fairly purposeful, and will pursue you if
it can see you.

You are required to inplement an ‘al ways escapes’
strategy in a programcalled ‘escape’

escape. t xt

10/ 14/ 10 04:38:42 2 of

The Maze Program

Your programis nanmed ‘escape’ and runs as a subprocess
of the ‘maze’ programwhich is provided to you. The
conmand to run this programis

maze escape

whi ch i nvokes the maze programwi th the ‘escape’ program
as its argument. Additional argunents added at the end
of this command will be passed to the ‘escape’ program
and may be of use for debugging.

As an introduction to this problem you are given a
sampl e ‘ escape’ program nanmed ‘sanpl e_escape’, which is
described in sone detail below. In this programyou
just nove randomy, so the nonster eventually eats you.
To see what is going on, type

maze sanpl e_escape
di
mL234
f30

f

f

f

f1 1000
bl 1
b10

f

f10

VVVVVYVVYVYVYVYV

(where the line beginning ‘>’ is a pronpt that you do
NOT type). The ‘f’ command runs time forward and the
‘b’ command runs tine backward: see below for details.

Escape Program | nput

The ‘maze’ programwites lines to the 'escape’ program
and reads lines witten by the ‘escape’ program The
lines witten by ‘naze’ and read by ‘escape’ each have
one of the follow ng formns:
- A line beginning with ‘-’ indicates the
start of a new test case.

nesw n, e, s, and w each denote one of the
characters W E, X, M described above
which tell you what you see in the
Nort h, East, South, and West directions
respectively. This line has exactly
4 characters. E.g., ‘VEMX neans there
are corridors to your East, South, and
West but not North, and in the corridor
to the South you see the nonster while
in the corridor to the Wst you see the
exit.

p... A line beginning with the letter ‘p
contains paranmeters for your ‘escape
program This is ONLY for debuggi ng.

‘escape’ programinput ends with an end of file, at
whi ch point the ‘escape’ program nust termnate.

escape. t xt

10/ 14/ 10 04:38:42 3 of

Escape Program Qut put

For each ‘nesw line input you nust choose a direction
in which to nove and output it as the first character on
a single line. The possibilities are ‘N for North, ‘E
for East, 'S for South, and ‘W for West. The rest of
the characters on the line are ignored but may be used
for debuggi ng i nformation.

If you make an illegal nove (either a line that does not
begin with ‘N, ‘E, ‘'S, or “W or you try to nove
through a wall), the prograns will crash.

For debuggi ng you may output |ines beginning with ‘i

bef ore you output the direction |line above. These |ines
will be printed by the ‘naze’ ‘f’' command (see bel ow),
and are ot herw se ignored.

If you output a line longer than 80 characters, only the
first 80 characters will be kept.

WARNI NG |If you are programmng in C you must execute
fflush (stdio);

after witing each line to the standard output, or your
output will be trapped in a buffer and never get to the
maze program In C++ the ‘endl’ 1O manipul ator flushes
the buffer and in JAVA ‘println’ flushes the buffer, so
not hi ng unusual needs to be done for these |anguages.

VWhen you ran ‘nmaze sanpl e_escape’ as indicated above,
just before the maze a |ine appeared which has the
form

escape-input-line >> escape-output-line

giving the last input line to the ‘escape’ program and
the output line that program produced to cause the |ast
nove.

Your ‘escape’ program nust be smart enough to escape the
nmaze wi thin 20,000 noves. Oherwi se you will be *QUT
OF TIMVE

Maze Program | nput

A sequence of conmand |ines each of which contain one of
the follow ng:

- A line beginning with ‘-’ indicates the
start of a new test case. The |line can be
used to hold the nane of the test case.

m S This line creates a maze and starts the
action. S is an unsigned integer that is
the seed for a pseudo-random nunber gener -
ator that is used to generate the nmaze and
set the initial positions of you, the
exit, and the nonster. The pseudo-random
nunber generator is also used to make
choi ces for the nonster during gane
action. S nust be unsigned and shoul d not
have nore than 9 digits. Different val ues
of S produce di fferent nmazes, but because
its a PSEUDO random nunber generator,
repetitions of this command with the SAVE
val ue of S always produce the sane maze.

If not in debugging node, this command
runs the ganme action to conpletion and
then prints a single line containing just
your fate: ‘ESCAPED , ‘EATEN, or ‘OQUT OF
TI VE' .

escape. t xt

10/ 14/ 10 04:38:42 4 of

di
do

f NMD

If in debuggi ng node the conmand prints
the maze. Then the ‘f’ and ‘b’ comrands
bel ow may be used to run the action for-
ward and backward.

A line beginning with the letter ‘p’ is
copied to your ‘escape’ programinput, and
can be used to pass paraneters to the
‘escape’ program This is for debuggi ng
only.

Turns debuggi ng node on
Turns debuggi ng node of f.

Used when the ‘nmi command was given in
debuggi ng node. Runs forward N*M st eps,
where a step is a one square nbve on your
part foll owed by a one square nove of the
nonster. After every Msteps, prints out-
put, and then pauses D seconds, if D > 0.
Runni ng stops if you escape or are eaten
or run out of tinme.

Unlike all other nunbers input, Dis
floating point. It defaults to the prev-
ious value given in any ‘f' or ‘b’ com
mand, or to 0.25 if there was no previous
value. If Mis also omtted it defaults
to the previous value given in any ‘f’ or
‘b’ command, or to 1 if there was no pre-
vious value. If Nis onmtted, it defaults
to 1.

For each group of M steps the foll ow ng
are printed. First some blank lines to
separate things from previ ous out put.
Then for every step any ‘i’ |lines output
by the ‘escape’ programare printed
followed by a Iine of the fornmat:

i nput >> out put

giving the input line to and output |ine
fromthe ‘escape’ programfor the step
Next the maze is printed, followed by a
status line that is often blank, followed
by a line that is blank or that begins
with a pronmpt for your next comrand.

This command can be term nated prematurely
by typing control-C. Typing control-C at
any other time terminates the ‘naze
program

b NMD Just like the ‘f’ commuand but npoves back-
ward in time instead of forward. However,
does not print ‘i’ lines or ‘input >>
output’ lines. Also, if going forward
after going backward, these lines are
not printed and the ‘escape’ programis
not involved until all previously run
st eps have been passed.

When input is froma file, each input line is also
output. Wien input is froma termnal, a ‘>’ pronpt is
out put at the beginning of each input |ine.

No i nput line may be | onger than 80 characters. |nput
ends with an end of file (if you are typing input you
can produce an end of file by typing control-D)

escape. t xt

10/ 14/ 10 04:38:42

5 of

Maze Program Qut put

Sanpl e Qut put

I[f not run froma termnal, ‘naze outputs a copy of its -- SAMPLE 1 --
input. It also always outputs the information described nl234
under the ‘m, ‘f’, and ‘b’ conmmands above. ESCAPED
Sanpl e Escape Program
——————————————————— Not es
You are given a program °‘sanple_escape’, that can be
used to see what ‘naze’ does. ‘sanple escape’ just If the nonster is on the sane square as the exit, you
executes the foll ow ng: will see the nonster and not the exit. Debugging
di splays will also show ‘M for the square and not ‘X
| oop:
read an input |ine If you want to wite your own version of ‘sanple_escape
on end of file exit program for fun or profit, you may find the foll owi ng pseudo-
if lineis a‘-" lineignore it random nunber generators useful:
if the line is an nesw |ine:
pick a direction at randomin which there is C #i ncl ude <stdlib. h>

no wall (any non-Wdirection) Coe
output a line indicating the picked i nt
direction
if alineis a‘p line, echo the |ine inside an C++:
‘i’ line, but otherw se ignore the ' i ne .o
i nt
Suggestions for running the ‘sanpl e_escape’ program are
gi ven above. Java:

Sanpl e | nput

-- SAMPLE 1 --
nmL234

i nt

static Randomr =

random() ;

#i ncl ude <cstdlib>

random() ;

i mport java.util.*;

new Random (123);

r.nextlnt();

escape. t xt 10/ 14/ 10 04:38:42 6 of 6

File: escape. t xt
Aut hor : Bob Wal ton <wal t on@eas. harvard. edu>
Dat e: Thu Cct 14 04:38:06 EDT 2010

The aut hors have placed this file in the public domain
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $

$Date: 2010/10/14 08:38:42 $
$RCSfile: escape.txt,v $
$Revision: 1.18 $

| exenes. t xt 10/ 12/10 18:41:13 1 of

Lexemnes

——————— Here <x>* nmeans zero or nore <x>'s, <x>+ means one or
nore <x>'s, and <enpty> means the enpty character

You have been asked to scan lines of input text into string.

| exemnes.
G ven a position in the input, the next lexene is the

For exanple, given the input |line LONGEST | exene that can be found starting at that

you

The

x = 5%y + "hello world";
are to output

IxI 1=l IS[*Iyl [+ |"hello world"[;
S wownos wo W qqqqqqqqqqqqq p

definitions are
<l exene> <synbol >

<whi t espace>

<oper at or >

<nunber >

<quot ed-stri ng>

<punct uati on>

<illegal >
<letter><letter-or-digit>*
<si ngl e- space- charact er >+

<synbol >
<whi t espace> :
<oper at or >
<number > <digit>+ <fraction-option>
<fraction-option> ::= <enpty> | ‘.’ <digit>+
<quot ed-stri ng> D=

‘"' <character-representative>*
<character-representative> ::=

<character-except-"-or-\> | “\"" | “\\”
<punctuation> ::= ‘" | (" | ‘) | '’
<illegal> ::=

<any-character-that-starts-no-other-|exene>

1+1 |1_1 |1*1 |1/1 |1:1 |1.

position. E.g., ‘8.1 scans as one nunber |exene and
does NOT include a ‘.’ operator.

If no other |exene can be found, the next character is a
l-character ‘illegal lexeme’. Note that this produces
sone idiosyncratic results. For exanple, if you forget
the closing " in a quoted string, there is no quoted
string | exene, and the " starting the string beconmes a
1l-character illegal lexeme. Simlarly if you put an
illegal character representative, such as \h, in a
quoted string. To be sure you inplenent the above rules
precisely, you should carefully check that your solution
gets the Sanpl e Qutput bel ow when gi ven the Sanpl e | nput
bel ow.

For each of several test cases two lines. The first
line is the test case nane. The second line is the
line you are to scan into | exenes.

There are NO tab characters in the input, so the only
space characters in the input are single space charac-
ters and line ending line feeds. No line is |onger
than 80 characters (not counting line feeds).

I nput ends with an end of file.

| exenes. t xt

10/ 12/ 10 18:41:13 2 of

For each test case, first an exact copy of the test case
nane line. Then two lines. The first is a copy of the
input line to be scanned with ‘|’ narks inserted at the
begi nning and end and in between scanned | exenes. The
next |ine has under each | exeme character a letter
giving the lexene type. This letter is sinmply the first
letter of the |l exene type nane (i.e., ‘s’ for synbol,

o for operator, ‘i’ for illegal |exenme, etc.).

Renenmber to test your programon the Sanple |nput and

be sure its output EXACTLY natches the Sanpl e CQutput.
Not e that numbers and symbols can be arbitrarily | ong,
and nunmbers CANNOT begin or end with ‘.. Also illega
qgquoted strings are NOT recogni zed as quoted strings, and
their initial " is treated as an illegal |exene.

Lastly, illegal lexenes are all 1-character |exenes,

i ke punctuation and operators.

Sanpl e | nput

-- SAMPLE 1 --

x = by21 + 3*x+foo("hi\\n",7.8);

-- SAWPLE 2 --

7.8 7. 8 7 .8 01234567890123456789. x!!
-- SAWPLE 3 --

?"He said: \"Ha\"?2\\n" + "He He\n" + "Ho"

Sanpl e Qut put

-- SAMPLE 1 --
x| 1=l I5ly21] |+ [3]|*[x]|+ fool (|"hi\\n"[,[7.8])];]
S WO WvVNnSSS WOWNOS 0 SSS P qgqgqqqg p nnn p p
-- SAMPLE 2 --

17.8] |7].1 18] |7 |.18 |01234567890123456789|.|x]!]|!
nNnN WnNn ownwn wo n W nnnnnnnnnnnnnnnnnnnn o S i i
.- SAWPLE 3 --

|?]"He said: \"Ha\"2\\n"| |+ |"|He| [He|\|n|" + "|Ho|"|

i 9ggqggqgqggqgqgggqgaqgqgqgqq W o Wi ss w ss i s gqqqq ss

File: | exenes. t xt
Aut hor : Bob Wl ton <wal t on@eas. harvard. edu>
Dat e: Tue Cct 12 18:39:49 EDT 2010

The aut hors have placed this file in the public domain
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $

$Dat e: 2010/ 10/ 12 22:41:13 $
$RCSfile: |exemes.txt,v $
$Revision: 1.8 $

bezi er . t xt

10/ 08/ 10 09:03: 33 1 of

Bezi er Curve

A Bezier Curve is a snooth approximtion to a segnented
line through the points P1, P2, ..., Pn. The segnented
line goes straight fromPl to P2, then straight on to
P3, etc., and so is conposed of a sequence of straight
i ne segnents. The Bezier Curve, however, is very
snoot h, although it starts at P1, ends at Pn, and very
roughly approxi mates the segnented |ine.

The points on the Bezier Curve are designated
B(t, P1, P2, P3, ..., Pn)
where t varies fromO through 1.

If there are only two points, the Bezier Curve is sinply
the straight |ine between them given by

B(t, P1, P2) = (1-t)*P1 + t*P2
If there are n>2 points the Bezier Curve for n points is

conputed fromtwo Bezier Curves for n-1 points as
foll ows

B(t, P1, P2, P3, ..., Pn) =
(1-t) * B(t, P1, P2, P3, ..., P(n-1))
+
t * B(t, P2, P3, P4, ..., Pn)
The points P1, P2, ..., Pn are called ‘control points’.

The Bezier Curve conputed fromthemstarts at P1 and
ends at Pn, and is tangent at its start to the straight
line P1-P2 and at its end to the straight Iine P(n-1)-
Pn. However, the Bezier Curve often does not get close
to non-end control points.

You have been asked to conmpute and pl ot Bezier Curves
and plot their control points.

For each of several test cases, a single line containing
the test case nane, followed by one or nore |lines
cont ai ni ng the nunbers:

mX Y n Plx Ply P2x P2y P3x P3y ... Pnx Pny
These nunbers nmay be on a single line or spread out

anmong several lines, and nay be aligned in any col ums
of the input |ines.

mis the nunmber of points of the Bezier Curve to be
conput ed, the graph has X colums and Y rows, n is the
nunber of control points, and (Plx, Ply), (P2x, P2y),
are the control points. 1 <=m 1 <= X <= 80;

1 <=Y<=40; 2 <=n<=050; 0<=PFPx <= X1;

0 <=Py<=Y-1 m X Y, and n are integers while
Pjx and Pjy may be floating point.

No input line is longer than 80 characters. The input
ends with an end of file.

For each test case one |ine containing an exact copy of
the test case nane input line, followed by ceiling(mb5)
i nes containing mBezier Curve coordinate pairs,
followed by Y lines containing a graph of the Bezier
Curve.

bezi er . t xt 10/ 08/ 10 09:03: 33

2 of 3

The lines containing the Bezier Curve coordinates
each have the format:

XX. X YY. Y XX. X YY. ¥ XX. X YY. Y XX.X YY.Y XX.X Yyy.y

where xx.x denotes an x-coordinate value and yy.y de-
notes a y-coordi nate val ue, each printed in 5 columms
with exactly one decinmal place (all correct numbers wi
be >= 0 and < 100). There are 5 (x,y) pairs per line
(maybe less on the last line), and these are in order
the B(t,...) values for t =0, /m 2/m 3/m ...,
(m1)/m(there is NOvalue for t = 1).

The graph is Y lines each with X colums. For each

B(t,...) point (x,y), an asterisk * is placed in

row =Y- floor (y +0.5)

colum =1 + floor (x + 0.5)
where rows are nunmbered 1, 2, 3, ... fromthe top and
colums are numbered 1, 2, 3, ... fromthe left. For

each of the initial points (Pix,Piy), a plus sign +is
then placed in

r ow
col umm

floor (

- P)
+ floor (P

5
5)

Y iy + 0.
1 ix + 0.

overlaying any * that is there.

Thus the lower |eft corner of the graph corresponds to
(x,y) = (0,0), and to conpute the graph |ocation of
(x,y) the values of x and y are both rounded to the

near est integer.

Not e: you MUST do the rounding correctly or your graph

will have misplaced ‘*'s or ‘+ s and your output wll
scored as | NCORRECT. The judge's input is chosen so
there will be no graphed x or y values extrenely near

the m dpoi nt between two integers.

be

Sanpl e | nput

-- SAMPLE 1 --
6 21 7
4004284
-- SAMPLE 2 --
40 41 16 16
20 O
0 5 010
10 15 14 15 15
20 6 20 5 20

25 15 26 15 30
40 10 40 5
20 O

12 6

520 6
15

bezi er . t xt

10/ 08/ 10 09:03: 33

3 of 3

Sanpl e Qut put

20.

6.
11.
16.
20.
23.
28.
33.

SAMPLE 1 --
0 0.0 2.0 1.0 4
0 5.0
+
*
+
*
+
SAMPLE 2 - -
0 0.0 13.7 1.9 o
1 86 6.6 9.8 7.
112.0 12.4 11.9 13.
5 10.0 17.3 9.5 18.
0 8.3 20.6 8.421
5 10.0 24.4 10.6 25.
9 12.0 30.2 11.8 31
9 8.6 33.8 7.1 32.
+ 4+
*k*k %

N~ bPhWROoOoON

mEooOr
AR OO OO

6.0 3.0 8.
7.3 5.5 6.
8.6 11.4 9.
14.6 11.1 15.
18.7 8.6 19.
21.9 9.0 22.
26.5 11.6 27.
32.5 10.8 33.
30.3 3.7 26.

WPhrONPPOOON

O©COOUTh~hOO®©E

Fil e: bezi er. t xt
Aut hor : Bob Wal ton <wal t on@eas. harvard. edu>
Dat e: Thu Cct 7 02:54:26 EDT 2010

The aut hors have placed this file in the public domain
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $

$Date: 2010/10/08 13:03:33 $
$RCSfile: bezier.txt,v $
$Revision: 1.8 $

congruent . t xt

10/ 12/10 20:39: 48 1 of

Congruent Pol ygons

You have been asked to determ ne whether or not two
pol ygons are congruent, and if so, how to transform
the first polygon in order to make it match precisely
the second pol ygon. The permitted transfornation
consi sts of an optional reflection about the X-axis
foll owed by a rotation counter-clockw se about the
origin foll owed by a transl ation.

For each of several test cases, a |line containing just
the test case nane, followed by |ines describing the
two polygons. Each polygon description is N+1 nunbers,
where N is the nunber of vertices in the polygon

The first nunber is Nitself. The rest of the nunbers
are x,y pairs for each vertex. Thus the format of a
pol ygon description is

N vix vly v2x v2y ... VNx vNy

except the nunbers may be distributed in any fashion
across one or nore lines.

The pol ygon vertices are always given in clockw se
order. The angl e between successive polygon sides is
al ways different from 180 degree, so no vertices are
superfluous. The two pol ygons have the SAME nunber of
vertices, N. 3 <= N <= 100.

To make things easier, the first vertex of the first
pol ygon is always (0,0), the origin

Lastly, all XY-coordinates have exactly 6 decim
pl aces.

No input line is |Ionger than 80 characters. |nput ends
with an end of file.

For each test case, two lines. First, an exact copy of
the test case nane line. Then either a |ine containing
j ust

not congruent
or a line of the fornmat
r angle x y

whi ch defines a transformation that carries the first

pol ygon onto the second pol ygon. Here
r I meani ng do NOT reflect the first polygon

R meaning DO reflect the first polygon

about the X-axis; the reflection of
(X,y) is (X,'y).

angl e is the angl e measured in DEGREES to ro-
tate the first polygon counter-clock-
wi se about the origin (the first vertex
of the pol ygon)

Xy are the anbunts to add to the x and y
coordi nates of the vertices to translate
the first polygon; thus the first vertex
(0,0) is translated to (0+x,0+y) = (X,Y)

The transformati on defined consists of first an optiona
reflection about the X-axis, then a counter-clockw se
rotation about the origin, and lastly the translation

congruent .t xt 10/ 12/ 10 20: 39: 48 2 of 3

The angle, x, and y may be printed to any nunber of Sanpl e | nput
deci mal places, or may be printed in C++ scientific = |------ -----
notation. However, if these values are rounded to too
few deci mal places, the translation they define may -- SAMPLE 1 --
beconme unacceptabl e (see discussion below), so we 5
suggest these val ues be output to 6 decinal places. 0. 000000 0.000000 0.000000 8.000000
5. 000000 6.000000 8.000000 8.000000
There is a technical problemrelated to the fact that 8. 000000
vertex input coordinates are only accurate to + or - 0. 000000
0. 0000005, given that they have only 6 deci mal pl aces. 5
W deal with this as follows. 4. 000000 5.000000 -4.000000 5.000000
-2.000000 10. 000000 -4.000000 13.000000
For any transformati on we define the error of the 4. 000000 13.000000
transformation to be the nmaxi num absol ute val ue of the -- SAMPLE 2 --
di fference between any input second pol ynom al vertex 5
coordi nate and the coordi nate val ue of the transforned 0. 000000 0.000000 0.000000 8.000000
corresponding first polynom al vertex. W define a 5. 000000 6.000000 8.000000 8.000000
transformation to be acceptable if its error is <= 0.001 8. 000000 0. 000000
(which is 2,000 times the input error). W define two 5
pol ygons to be congruent if there is an acceptable -4. 000000 13.000000 4.000000 13.000000
transformation. Then for judging safety, the judge’s 2.000000 10. 000000 4.000000 5.000000
i nput data are carefully chosen so that if the pol ygons -4. 000000 5.000000
are congruent there are obvious transforms with errors -- SAMPLE 3 --
wel | below 0.001, and if the pol ygons are not congruent 5
all possible transfornms have errors well above 0.001. 0. 000000 0.000000 0.000000 8.000000
In other words, there are no ‘close calls’ in the 5. 000000 6.000000 8.000000 8.000000
j udgi ng i nput . 8. 000000 0. 000000
5
If the polygons are congruent you nust output an accep- 4.000000 5.000000 -4.000000 5.000000
table transform |If there is nore than one, output only - 6. 000000 10. 000000 -4.000000 13.000000
one. 4. 000000 13.000000

congruent .t xt 10/ 12/ 10 20: 39: 48

3 of 3

Sanpl e Qut put

-- SAMPLE 1 --
[90. 000000 4.000000 5.000000
-- SAWPLE 2 --
R 90. 000000 -4. 000000 5.000000
-- SAMPLE 3 --

not congruent

File: congruent . t xt
Aut hor : Bob Wal ton <wal t on@eas. harvard. edu>
Dat e: Tue Cct 12 20:28:22 EDT 2010

The authors have placed this file in the public domain
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $
$Date: 2010/10/13 00:39:48 $
$RCSfile: congruent.txt,v $
$Revision: 1.11 $

escape2. t xt

10/ 14/ 10 07:58:14 1 of

Escape From The Maze: Part 11

The maze fromthe ‘escape’ problem has been upgraded to
be nore difficult.

The big new difficulty is that nore than one nonster is
now present, and you can be trapped. Note that two
nonsters cannot occupy the same square (they will not
fit).

However, there is sone good news. First, you now can
hurl immobilizing juice at a nonster to stop it from
doi ng anything for a while. Exact rules for this are
bel ow.

And in addition to seeing whether there is a wall
corridor end, exit, or nonster in a particular
direction, you can see how far away these things are.

You have a flask which can hold any anmpunt of immobil -
izing juice. You can remove N units of this juice from
the flask and hurl it at any nonster you can see. This
will inmmobilize the nmonster for N nbves. You can occupy
the sane square as in i mobilized nonster W THOUT bei ng
eat en.

Jugs of inmobilizing juice are on certain squares of the
maze, and when you occupy such a square any juice in the
square’s jug will be automatically transferred to your

flask. Furthernore, the jugs refill at the rate of one
juice unit per R noves you nmake (1 <= R<=5), so if you
cone back to a jug you will get nore juice. You need

not hurl the entire contents of your flask at a nonster.

Each jug has a nmaxi mum capacity of from1 to 9 juice
units. Jugs are represented in pictures of the maze by
the digits 0 through 9 which tell how much juice is
currently in each jug. A jug cannot occupy the exit
square

To make things nore interesting, the sizes of the the
mazes have been increased for this problem A nmaze
can be at nost 40 lines tall and 80 colums w de. You
shoul d set your term nal window to 48 lines tall tines
80 columms wide to use debuggi ng node for nmaze2. Then
you can type

maze2 sanpl e_escape?
di

nb 502 1234
f30

f

f

f1 1000

bl 1

b10

f

f10

VVVVVVYVYVYVYV

to get a feel for the problem

There is no infallible solution to this problem In
order to nake it tractable, a newj conmand i s added
to the maze program see bel ow.

escape2. t xt

10/ 14/ 10 07:58:14 2 of

The Maze Program

In the same fashion as the ‘escape’ program you test
your program by running

maze2 escape2

The ‘maze2’ program has the sane conmands as the ‘maze
program except for one command that is changed and two
new conmands. The changed and new commands are:

mMJ FRS
Four paraneters, M J, F, and R, are added to
the naze creation coomand. Mis the nunber of
nonsters, J the nunber of jugs, F the nunmber of
potion units initially in your flask, and R the
nunber of noves you make before one unit of
potion is added to a jug you have enptied. Sis
the random nunber generator seed as before.

In addition, if you give NO paraneters, but just
input ‘m, the paraneters are set fromthe

FAI LED MAZE file witten by the ‘j K comand
bel ow.

] Your programis judged, using the same mazes
(i.e., ‘m command paraneters) as the judge wl|
use to score your program |f your program
escapes a sufficient nunber of these nmazes in a
sufficiently small number of total noves, this
conmand will print ‘SUCCESS!'. If not, it wll
print ‘FAILURE!". The command will also print
the nunber of mazes you escaped, your tota
nunber of noves, and the nunbers required for
success.

A submi ssion for which the ‘j’ command produces
*SUCCESS!” will be scored CORRECT, and a sub-

m ssion for which ‘)’ produces ‘FAILURE!" will
be scored | NCORRECT.

Not e that debugging is effectively off during
the *j’ command (so there is no way of seeing
all the mazes you succeeded on).

Sane as | but the conmand stops on the Kth nmaze
you fail to escape fromand wites the ‘ni com
mand for this nmaze in the FAILED MAZE fil e,

whi ch can be used by the ‘m command above to
permt you to debug your programon the first
failed maze

Al so, the mazes output by the ‘maze2’ program have three
features the ‘nmaze’ program output does not have.

First, a square with a potion jug has a digit, ‘0O
though *9', indicating how full the jug is (the capacity
of the jug is not indicated, but the jugs will be at
capacity initially and will stop filling when they reach
capacity). Second, an i mobilized nonster displays as
an ‘I’ instead of an ‘M. And third, several things

can be on the sanme square, and in that case the priority

of display fromlowest to highest is 'Y, ‘X or jug,
‘1" or “M. Thus if you and an inmobilized nonster
occupy the same square, you will see an ‘I’ in that
square

The nunber of nazes tested by the ‘j’ comrand is |arge
to prevent you fromusing ‘j’ to extract all the judge s
maze paraneters within the time constraints of the con-
test. The judge’s solution has nodest intelligence

of a straight forward kind. BUT, to succeed in this
probl em you shoul d have a plan for increasing the intel-
i gence of your escape program as much as necessary.

escape2. t xt 10/ 14/ 10 07:58: 14

3 of

Note also that there is no limt on the number of noves
you may nake on any given maze, and no OUT OF TIME
result for a single maze, but there is instead a limt
on the nunber of noves you may make for all mazes tested
by the ‘j’ command.

Escape2 Program | nput

The ‘-...” and ‘p...’ input lines are as for ‘escape’
A new ‘m input |ine has been added, and the ‘nesw line
has been changed. The new or changed |ines are:

mF R F is the nunmber of units of potion
initially in your flask, and Ris the
nunber of noves you nust make in order
for one unit of potion to be put in any
jug that is not full

Note: you are NOT told M the number of
nonsters in the nmaze, or J, the nunber
of jugs in the maze.

neswx n, e, s, and w each denote one of the
foll owi ng STRI NG of characters:

W

#E #IHE
#X #I#X
#M #IHM

Here the # s stand for unsigned deci na
integers. #E, #X #M nmeans there are #
squares until the the corridor ends or
there is an exit or there is a nonster.
== 0 nmeans the exit or nobnster is in
the next square; OE is never used (Wis
used instead). You cannot see beyond an
exit or nonster.

#J neans there are # squares until there
is ajug. You can see corridor ends,
exits, and nonsters beyond a jug, but
you cannot see anot her jug beyond a jug.

You are NOT told whether or not the npn-
ster is nobile.

#M does not tell you about any inmobil -

i zed nonster in the same square as you,
and #J does NOT tell you about any jug
in the same square as you (but see #F
below). |If a square holds a nonster and
sonet hing el se you see only the nonster.

x is one of the follow ng strings of
characters:

"" (enmpty string)
#F

#F neans there is a jug on your square
fromwhich # units of potion have just
been transferred to your fl ask.

There are no space characters in a neswx
l'ine.

escape2. t xt 10/ 14/ 10 07:58:14 4 of

Escape2 Program Qut put

For each ‘neswx’ line input you must output a line with
one of the follow ng formats:

d #dd

Here ‘d’ is one of the direction characters, N, E, S, or
W as for ‘escape’. The last ‘d" is the direction in
whi ch you want to nove. A preceding ‘#d neans you

want to hurl # units of potion in direction d. Thus

on i nput

WIMALOE
you m ght respond
2EW

to hurl 2 units of potion at the nonster to your East
and then nove yourself one square Wést.

You may put debugging information on these |ines after
the character indicating the direction in which you
nove. You must not put any space characters before
this character. |If you output a line with nore than
80 characters, only the first 80 will be kept.

If you hurl potion in a direction in which there is no

nonster, the potion will have no effect. If you try to
hurl nore units of potion than you have, all the potion
that you have will be hurled. |In particular, if your

flask is enpty, hurling potion has no effect.

File: escape?2. t xt
Aut hor : Bob Wal ton <wal t on@eas. harvard. edu>
Dat e: Thu Cct 14 07:52:50 EDT 2010

The aut hors have placed this file in the public domain
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $

$Date: 2010/10/14 11:58:14 $
$RCSfile: escape2.txt,v $
$Revision: 1.15 $

pl ans. t xt

10/ 14/ 10 09:30: 40 1 of

Maki ng Pl ans

You are being asked to make m ninmal plans.

These plans concern a world that is described by propo-
sitions that are either true or false. There are 26
possi bl e propositions, one for each | ower case letter of
t he al phabet.

For each proposition ‘p’ there are two ‘literals’ that
can be used to describe the world: “+p’ is alitera

that neans proposition pis true, and ‘-p’ is alitera
that neans p is false. The negation of a literal is the
sane literal with the sign switched, i.e., -p is the
negation of +p and +p is the negation of -p.

Pl ans consi st of actions. An action has the form
nane: { pre-condi ti ons}=>{post-condi tions}

where ‘name’ is a natural nunber, pre-conditions is a
list of literals that nust be true in order for the
action to be taken, and post-conditions is a list of
literals that will be true after the action has been
taken. An action is described on a single |line which
is witten without any spaces; for exanple:

7: +p- q=>- p+q+r +t

A set of literals is conflicting if for sone p both +p

and -p are in the set. The pre-conditions of an action
must be non-conflicting, and sinmlarly the post-condi-

tions of an action nmust be non-conflicting.

A plan is:

(1) A set ACT of actions.

(2) A strict partial order << on the set of actions ACT.
Intuitively nk<n nmeans m cones before n

(3) A set of causal links. A causal link is denoted by

mE>n:

where mand n are nanes of actions in ACT, mis an
action to be taken to satisfy the pre-condition c
of n, and c is a literal in the post-conditions of
m and the pre-conditions of n. m>n:c necessarily
i mplies nk<n.

A strict partial order is a binary relation that is
transitive and anti-symretric. Antisymetry neans that
m<n i nmplies NOT n<<m

An action b is said to be a ‘threat’ to causal link
me>n:c if the negation of ¢ is a post-condition of b,
and b does not equal mor n. If bis athreat to
m=>n:c, then either b<<m or n<<b nust be true or the
plan is inconsistent.

In order to define the initial state of the world and
the final or goal state that our plan seeks we introduce
two special actions, the initial action O and goa

action 1, which have the forns:

0:=>{initial-conditions}
1:{goal -condi tions}=>

0, the initial action, has enpty pre-conditions and its
post-conditions represent the initial state of the
world. 1, the goal action, has enpty post-conditions,
and its pre-conditions represent the desired or goa
state of the world. Every plan nust contain the 0 and 1
actions. 0<<1 is required, and 0O<<nxk<l is required for
all actions min the plan other than 0 or 1.

pl ans. t xt

10/ 14/ 10 09:30: 40 2 of

A plan is consistent if its strict partial order is
really a strict partial order and if for every causa
link me>n:c in the plan and every action b in the plan
that is a threat to that link, either b<<m or n<<b

A plan is conplete if it includes 0 and 1, 0<<1 and for
every other action min the plan O<<nmk<l, and for every
action nin the plan and every literal c in the pre-con-
dition of n, there is EXACTILY ONE causal link ne>n:c in
the pl an.

Note that an action can be used at nobst once in a plan
we do NOT permt actions to be replicated. Also note
that there can be two causal links in a plan of the
forms me>n:cl and me>n:c2; that is, mE>n can appear nore
than once in a plan but with DIFFERENT literals c1 and
c2.

You are being asked to find mininmal conplete, consistent
pl ans.

For each of several test cases, a |line containing just
the test case nane, followed by any number of |ines
each describing one action, followed by a |line contain-
ing just ‘.’

There is one action naned ‘0’ and one naned ‘1" in each
test case. All other action names are unique and are
natural nunbers. The snallest natural number N such
that all action nanes are in the range 0 .. N1 is
inmplicitly input and is used to define the output (see
bel ow) .

3 <= N <= 200.

There is no whitespace in any input |line other than the

test case nanme line. Input lines are at nost 80 char-
acters long. |Input ends with an end of file.
Qut put

For each test case, first an exact copy of the test case
nane |ine, followed by a description of a mniml con-
sistent conplete plan for the test case, or a single

i ne containing EXACTLY ‘no plan’, neaning that no con-
sistent conplete plan is possible for the test case.

The description of a minimal plan begins with N Iines
each containing N characters that describe the strict
partial order, followed by |lines each describing one
clausal link in the plan, followed by a line con-
taining just ‘.’ See ‘lInput’ above for a definition
of N

In the N lines describing the strict partial order
colum n of line mis

1" if mand n are in the plan and nx<n
0" if mand n are in the plan and NOT nx<n
0" if either mor nis NOT in the plan

Here lines are numbered 0, 1, 2, fromtop to bottom
and colums are nunbered 0, 1, 2, fromleft to
right. |If no action naned mis in the input, mis
treated as an action not in the plan for the purposes

of this paragraph (you can treat mas an action with no
pre- or post-conditions).

The lines describing the causal |inks each have the
form* m=>n:c’

pl ans. t xt 10/ 14/ 10 09: 30: 40

3 of 4

There are no spaces in any output |ines except test case
nanme lines and ‘no plan’ |ines.

The plan output nmust be mnimal in the foll ow ng senses.
First, it nmust contain a mnimum nunber of actions.
Second, anong all plans with the m ni mum nunber of
actions, it nust have the m ni mum nunber of clausa
links. Third, anong all plans with the m ni num nunber
of actions and m ni mum nunmber of clausal |inks, it nust
have the m ni mum nunber of << relations (literally, the
m ni mum nunber of ‘1's in the strict partial order de-
scription).

Sanpl e | nput

-- SAMPLE 1 --
2: +b=>- b+c
3: +c=>-c+d
4: +c=>+f
0: =>+b
1: +d=>

SAMPLE 2 --
:=>+c-d
:-f+c-g=>

i -h=>+k-a
t+b=>-mc

© +Cc=>+b-C
i-d=>+d-f

- d+c=>+f +k
: +f =>+g+b

. - k+h=>- h+m
. +g+c=>-f +m
0: +g=>-g-b

POO~NOOUOPWNELO ! -

Sanpl e Qut put

-- SAMPLE 1 --
01110

00000

01010

01000

00000

3=>1: +d
2=>3. +C

0=>2: +b

-- SAWPLE 2 --
01000111001
00000000000
00000000000
00000000000
00000000000
01000000000
01000101001
01000100001
00000000000
00000000000
01000000000
0=>1: +c
5=>1:-f
0=>5:-d
10=>1:-¢
7=>10: +g
6=>7: +f
0=>6: +c
0=>6:-d

pl ans. t xt 10/ 14/10 09: 30: 40 4 of 4

File: pl ans. t xt
Aut hor : Bob Wal ton <wal t on@eas. harvard. edu>
Dat e: Thu Cct 14 09:30:13 EDT 2010

The aut hors have placed this file in the public domain
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $

$Date: 2010/10/14 13:30:40 $
$RCSfile: plans.txt,v $
$Revision: 1.9 $

penrosetiling.txt

10/ 14/ 10 09:51: 26 1 of

Penrose Tiling

Sir Roger Penrose investigated aperiodic tilings of the

plane in the 1970’s. These tilings are generated

froma snmall nunmber of finite shapes by follow ng a set

of rules, but no translation of a tiling is identical to
the tiling, hence the designation ‘aperiodic’

Penrose rhombus tilings are generated froma pair of
rhombi called ‘t’, the ‘thin’ rhonbus, and ‘T, the
‘“thick’ rhonbus. Al sides of these are unit |ength.
The angles of t are 36 and 144 degrees, and those of T
are 72 and 108.

The sides of the rhombi al so need to be | abel ed, so
we give the following algorithnms for draw ng them using
a pen:

for t, thin rhonbus:
draw a straight line of unit length |abeled +1
turn left 1*36 = 36 degrees
draw a straight line of unit length |abeled -1
turn left 4*36 = 144 degrees
draw a straight line of unit length | abeled +2
turn left 1*36 = 36 degrees
draw a straight line of unit length |abeled -2
turn left 4*36 = 144 degrees
you are now back in your starting position

for T, thick rhonbus:
draw a straight line of unit length |abeled +1
turn left 2*36 = 72 degrees
draw a straight line of unit length | abeled +2
turn left 3*36 = 108 degrees
draw a straight line of unit length |abeled -2
turn left 2*36 = 72 degrees
draw a straight line of unit length | abeled -1
turn left 3*36 = 108 degrees
you are now back in your starting position

The rhombi nust be fit together so:

1. The rhombi are rotated and/or translated but NOT
flipped over.

2. Two rhonbi may not intersect. This neans that
their intersection as sets, including boundaries,
nmust not contain any points EXCEPT for those in
shared vertices and shared edges.

3. Wien an edge is shared between two rhonbi, the
sum of the two | abels of the edge must be O.
E.g., a +2 edge fromone rhonbus may be shared
with a -2 edge from anot her rhonbus, but NOT with
a +2 or -1 or +1 edge.

4. There are no holes in the tiling.

In this problemyou are given a proposed finite Penrose
rhombic tiling and you are asked to determ ne whet her
it follows all the above rules.

We need a way to describe a finite Penrose rhonbic
tiling. We do this by placing the tiles down on the
xy-plane so that each tile but the first shares an edge
with one of the tiles laid down so far.

The first tile is always a T-tile with its +1 edge dir-
ected from(0,0) to (1,0) and its +2 edge directed from
(1,0) to (x,y) with x>1, y>0. This is referred to as
the ‘standard position’ for the first tile, which is
also tile 1 in a our tile |abeling scheme that nunbers
the ntiles laid down so far from1 through n.

penrosetiling.txt

10/ 14/ 10 09:51: 26 2 of

The position of the n+l' st tile is given by the line
kj e
wher e

k is the kind of tile, either ‘“t’ or 'T

j is the nunber of a previous tile that is to
share an edge with the newtile; 1 <=j <=n

e is the label (+1, -1, +2, or -2) of the edge
of tilej that is to be shared with the new
tile, respecting the rule about the sum of
shared edge | abel s being zero

Thus the line ‘t 7 -2" says to lay a t-tile so that its
+2 edge is shared with the -2 edge of the 77th tile
[ai d.

The input consists of test cases. FEach test case begins
with a line containing the nane of the test case. This
is foll owed by any number of |ines each containing a
description ‘k j e of another tile to be laid to make a
tiling pattern. The first tile of the pattern is in
standard position, and the i'th line of the form‘k j e
describes howto lay the i+1' st tile. After these lines
there is a line containing just ‘., which is the |ast
line of the test case.

maxi mum number of tiles <= 10, 000

for each tile vertex (Xx,y):
-100 <= x <= +100
-100 <= y <= +100

For each test case, first output an exact copy of the
test case nane line, and then output just one line in
one of the follow ng formats:

tile # intersects tile #

tile # edge # is shared with tile # edge #
there are # hol es

tiling OK

Here the # s are integers that are tile |abels, edge
| abel s, or counts. The first line is output if two
tiles intersect; the second if two share edges have

| abel s not sunming to 0. If the tiling violates the
rul e agai nst intersection AND the rul e agai nst edge

| abel s not sunming to O, then either of the first two
lines may be output -- only one violation is to be
reported.

However, reporting holes nmust ONLY be done if there are
NO i ntersection or edge |abel sumviolations.

Printing | nput

As a debuggi ng aid, the command
print_penrosetiling foo.in
will print a picture of the tiling described in foo.in.

The file sanple_input.ps contains the result for the
sanpl e i nput.

penrosetiling.txt

10/ 14/ 10 09:51: 26

3 of 3

The labels in the picture are represented by single
arrows (+1, -1) or double arrows (+2, -2) going around
the rhonmbus boundary in the counter-clockw se (+1, +2)
or clockwi se (-1, -2) directions. They are offset so
that usually if a shared edge has | abels not summng to
zero this will be visible in the picture. But their
are perverse cases; consider

- PERVERSE CASE - -
+1

—

Sanpl e | nput

This is available in the file sanple_input.in

Sanpl e Qut put

-- PENRGCSE TI LI NG SAMPLE 1 --
tiling OK

-- PENRCSE TI LI NG SAMPLE 2 --
tile 1 and tile 7 intersect

File: penrosetiling.txt
Aut hor : Bob Wal ton <wal t on@eas. harvard. edu>
Dat e: Thu Cct 14 09:48:57 EDT 2010

The aut hors have placed this file in the public domain
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $

$Date: 2010/10/14 13:51:26 $
$RCSfile: penrosetiling.txt,v $
$Revision: 1.13 $

