probl ens 10/ 15/ 09

07:57:02

1 of 1

Pr obl ens | ndex Thu Cct 15 07:57:01 AM EDT 2009

BOSPRE 2009 PROBLEMS

The problens are in approxinmate order of difficulty,
easi est first.

probl ems/turt! edraw
The Art of Turtle
Boston Prelimnary 2009

pr obl ens/ evenst even
Wiy is this named Even- Steven?
Boston Prelimnary 2009

pr obl ens/ nasheq
Does nath really hel p?
Boston Prelimnary 2009

pr obl enms/ myr sync
Cl ever sunm ng saves cycles.
Boston Prelimnary 2009

pr obl ens/ conbi nat or s
Functions wi thout vari abl es.
Boston Prelimnary 2009

probl ens/ | ogi stic
Statistical stability can be weird
Boston Prelimnary 2009

turtl edraw. t xt

10/ 15/ 09 05:44: 48 1 of

Turtl e Draw

A beaver, a dog, a frog, and a man were sharing a corner
of a pond on a sweltering evening in early August. The
beaver was considering air conditioning, the frog was
imagining a water fall, the dog was happy to just swim
after tennis balls, and the man knew he needed to wite
a conputer program

VWen he got home the man wote a programcalled ‘turtle-
draw , in honor of the turtle that lived in the pond.
She was not with the foursone that particul ar August
eveni ng, which just as well, as a 40 pound snappi ng
turtle is a bit of a pond party pooper

The input contains a series of commands for an inaginary
turtle living on an infinite board of squares. At any
time, the turtle is on a particular square, and is
facing in one of four directions, up, right, down, or
left. In the beginning the turtle is facing up and

all squares are bl ank.

The commands ar e:

M Move forward one square.

L Turn left 90 degrees.

R Turn right 90 degrees.

<ot her > Any ot her non-bl ank character:

wite the character on the
current square and THEN nove
forward one square.

The input is a sequence of test cases. Each test case
begins with a line that nanes the test case. This is
foll owed by one or nore |ines which contain commands
for the turtle. No command |ine contains whitespace
characters, and no command |ine contains just the

character ‘.’ The test case ends with a line
containing just ‘.’ (exactly one '.").
In any test case the turtle will not wander nore than

100 squares in any direction away fromits starting
position. No input line will contain nore than 80
characters.

For each test case, first one line that is an exact copy
of the test case nane line, then a single enpty line
(with no characters), and then just the portion of the
infinite board that contains non-blank squares.
Specifically, this portion of the board shoul d NOT have
any blank lines at its top or bottom or any bl ank
colums at its left or right edges. At the end of the
test case, right after the portion of the board with no
bl ank lines, there should be a single blank Iine.

Thus the output for each test case should have exactly
two blank lines: the second line (after the nane and
before the board), and the last line (after the board).
The entire output for ALL test cases ends with a bl ank
l[ine (if you get a ‘format error’ score you nay have the
bl ank |ines wong).

turtl edraw. t xt

10/ 15/ 09 05:44: 48

2 of 3

Sanpl e | nput

-- Sl GN\- -
EVIRMGORVDOANL MTHENL MPU

L-HAT--
B M\ LL
MWL]RM____ RM

- - DOG -
RRk**LNRk**LNR***L**RNL****LNR**L****RNL***RNL***
L/ 71117 _ANNNAN L\ %% RML* * %

LL MRVIVVIVIVVIVMVIVIVIVIVIVIVIVL * * % * | IVR *

L MVIVIVMVIVIVVIVL MVIVIL - - MV -

Sanpl e Qut put

- - SI G\
co
W D
E O
w U
N P
THEN
__|—[AT__
V| |/
--DOG -
VAN /77T
* % * %
* % * %
* *
*
*

NOTE: This output ends with a single blank line.

turtl edraw. t xt 10/ 15/ 09 05:44: 48 3 of 3

Fil e: turtl edraw. t xt
Aut hor : Bob Wal t on <wal t on@eas. har vard. edu>
Dat e: Thu Cct 15 05:42:30 EDT 2009

The aut hors have placed this file in the public domain
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $
$Date: 2009/10/15 09:44:48 $
$RCSfile: turtledraw txt,v $
$Revision: 1.5 $

evenst even. t xt

10/ 15/ 09 05:58: 04 1 of

Even Steven

Even- Steven is a one person card gane played as foll ows.

First you deal yourself a hand of cards. Then you dea
cards one at a tine, and every tine you deal a card,

you nmust cover it by playing one card of equal or higher
val ue fromyour hand, or you |lose the ganme. |If your
hand runs out of cards wi thout |osing, you wn.

Pr ogr anms

You are asked to wite a programcalled ‘evensteven’
that plays your hand. A programcalled ‘dealer’ is
provided that is the dealer. Each of the two prograns
reads its standard input and wites its standard
output. The standard input and output of the deal er

is connected to a terninal or file. The standard i nput
and out put of your ‘evensteven’ programis connected to
the deal er program the dealer wites what ‘evensteven
reads and reads what ‘evensteven’ wites.

If you invoke the prograns with the command
deal er evensteven

the dealer starts your ‘evensteven’ programas a
subprogram (actual |y subprocess) of the dealer. Then
the dealer reads fromthe termnal, wites to your
‘evensteven’ program reads fromyour ‘evensteven
program and wites to the term nal

I nput for the ‘deal er’ Program

For each of several ganes, just one line that contains
N seed

where N is the nunber of cards dealt to the player’s
hand (0 < N <= 13), and seed is the seed of a pseudo-
random nunber generator that is used to shuffle the
deck (0 < seed < 2147483647).

The input ends with an end of file.

I nput for ‘evensteven' Program

For each of several ganes, first a line that describes
your hand (the first N cards of the shuffled deck).
This line has the form

NClL C ... CN

where N is the nunber of cards and each G is a card
specified in the format:

G := <val ue><suit>

<value>:=2 | 3| 4| 5| 6] 7| 8] 9| 10
| J 1 Ql K| A

<suit>:=c | d]|] h] s

Here the <value> is a nunber or J for ‘jack’, Qfor
‘queen’, K for ‘king’, or Afor ‘ace’. A <value>is
greater if it is later in the above list; i.e., the
hi ghest value is ‘A for ‘ace’ and the lowest is ‘2

evenst even. t xt

10/ 15/ 09 05:58: 04 2 of

The <suit>is ¢ for ‘clubs’, d for ‘dianpnds’, h for
‘hearts’, or s for ‘spades’. The suit of a card has
NO af fect on the card' s val ue.

So ‘2c¢’ is the two of clubs and ‘Jh’ the jack of hearts.

After this first line, each following |line nanes a
single card being dealt fromthe reni nder of the deck
or is one of the foll ow ng:

YOU WN
YQU LOSE

Ei ther of these last two |lines ends the gamne.

VWen you read an end of file, you MJST term nate the
program (ALL the ganes are over).

Qut put for ‘evensteven’ Program

For each game, every tine you read a line naning a
single card dealt after your hand has been dealt,

you nust output one line nanmng the card in your hand
that you are playing. Once you play a card this way,
it is removed fromyour hand and you cannot play it
again .

A played (output) card is non-losing if its value is not
| ess than the value of the dealt (input) card.

You MUST play a card for each card dealt, even if you
have only a losing card (in which case the next line you
read will be ‘YOU LOSE'). Oherwi se the dealer wll
time out waiting for you to output a card, and you wl|l
be given a ‘program crashed’ score as detail ed under
‘Scoring’ below. Sone hands are necessarily |osing, and
you nust | ose these gracefully to have a successfu
‘evensteven’ program

WARNI NG |f you are progranmng in C you nust execute
fflush (stdio);

after witing each line to the standard output, or your
output will be trapped in a buffer and never get to the
dealer. In C++ the ‘endl’ 10O manipul ator flushes the
buffer and in JAVA ‘println’ flushes the buffer, so
not hi ng unusual needs to be done for these |anguages.

Qut put for the ‘dealer’ Program

For each of the several ganes, first a |ine containing
‘Game # where # =1, 2, 3, is the nunmber of the
gane, and then one of the lines:

YOU WN
YOU LOSE NECESSARI LY
YOU LOSE UNNECESSARI LY

You can lose in either of two ways: ‘NECESSARI LY
because there is no way to play your hand and win,
and ‘ UNNECESSARI LY’ because you played a wi nni ng hand
badly (the dealer is a smart al ec).

evenst even. t xt

10/ 15/09 05:58: 04

3 of

Scori ng

The judge’s test input and output are for the dealer

program and the judge's test output does NOT contain

any ‘YOU LOSE UNNECESSARILY' lines. Thus if your

program | oses unnecessarily, you will get a score of

‘“incorrect output’.

I f your programoutputs a badly formatted |ine the
‘deal er’ programwil |
programw || get the score ‘incorrect output’.

Simlarly you will get ‘incorrect output’
a card not in your hand or you play the same card
twice in a gane.

I f your program hangs up readi ng when the dealer is

out put an error nessage and your

if you play

trying to read fromyour programa |ine your program

failed to wite, the dealer wll
and abort, causing a score of ‘program crashed’

Debuggi ng

If your ‘evensteven’
with “*, the ‘dealer’ programwl|
its standard output and otherw se ignore the |ine.
can be used for debugging. For exanple, in C++ one
m ght use

detect this eventually

program outputs a |ine that begins
copy that line to

Thi s

bool debug = fal se;
#define dout if (debug) cout << "* "

ﬁain.(int argc)
debug = (argc > 1);
doﬁt.<< "my debuggi ng nessage" << endl

The ‘deal er’
‘evenst even’

program passes extra argunents onto the
progranm e.g.

deal er evensteven debug

execut es ‘evensteven debug’
conmand in the ‘solving

See the ‘' nmake debug’
help file.

However, if you output ‘*’ lines when just ‘evensteven
with no argunents is called, in the code you subnit to
the judge, these lines will appear in the output file
and you will get the score ‘Incorrect CQutput’.

One use for debugging ‘*’ lines is sinmply to echo al
i nput to and output from‘evensteven' so you can see
how a gane is going.

Sanpl e I nput for Dealer

4 876390176
4 653723903

evenst even. t xt

10/ 15/ 09 05:58: 04 4 of

Sanpl e I nput for Evensteven

4 4h 2d & Jc
8c

(00

9s

YOU LCSE

4 Kd 8c As 5s
3s

6h

Kh

5c

YOU W N

Sanpl e Qutput for Evensteven

Jc
(03
2d
5s
8c
Kd
As

Sanpl e Qutput for Dealer

Gane 1

YOU LOSE NECESSARI LY
Game 2

YOU WN

Fil e: evenst even. t xt
Aut hor : Bob Wal ton <wal t on@eas. har vard. edu>
Dat e: Thu Cct 15 05:56:44 EDT 2009

The aut hors have placed this file in the public domain
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $
$Date: 2009/10/15 09:58:04 $
$RCSfil e: evensteven.txt,v $
$Revision: 1.9 $

nasheq. t xt 10/ 12/ 09

00: 14: 48 1 of

Nash Equi librium

In Ganme Theory a sinple finite two-person gane consists
of

two pl ayers

afinite set of ‘strategies’ for each player

a payoff matrix for each player

Let the two players be R (‘rows’)
Let the strategies for R be labeled 1, 2, ..., NR and
the strategies for C be labeled 1, 2, ..., NC. The
payof f matrix for Ris R(r,c) where r is a strategy

for Rand ¢ a strategy for C, while the payoff matrix
for Cis sinmlarly C(r,c). These matrices have integer
el ements and | arger payoffs are better.

and C (‘colums’).

A round of the ganme consists of each player privately
choosing a strategy, and then the two pl ayers

si mul taneously announce their strategies. Let r be
R s strategy and ¢ be Cs. Then the round pays R the
amount R(r,c) and pays C the anobunt C(r,c).

You mght think this sinple mnded, but it is an
abstraction that covers ganmes such as Ti cTacToe.
TicTacToe a strategy will be sonme algorithmfor

pl ayi ng the ganme, and a round will consist of each
pl ayer choosing a strategy privately and the gane being
pl ayed according to these strategies. The payoffs m ght
be +1 for winning, -1 for losing, and O for tie.

For

The payoff matrices are commonly specified by a single
matri x whose elenments are ‘R(r,c)/C(r,c)’. Thus we have
the cl assic game:

Pri soner’s Dil emma

1=Remai n- Si | ent 2=Conf ess
1=Renmai n- Si | ent -6/-6 -120/0
2=Conf ess 0/-120 -60/ - 60

Two prisoner’s are charge with a crime they conmitted.

If both remain silent, they each serve 6 nonths. |If
both confess, they each serve 60 nonths (5 years). |If
one confesses and the other remains silent, the confes-

sor goes free and the other prisoner serves 120 nonths

(10 years).

This game is symmetric: R(r,c) = C(c,r). But not al
ganes are.

G ven a gane, a ‘dominated strategy’ for Ris an r such

that there exists an r’ for which R(r’,c) >= R(r,c)
for every c and R(r’',c’) > R(r,c’) for some c’'. The
idea here is that r’ is always a better strategy than
r, sor is ‘domnated if and only if there is sone
other strategy that is always better. A dom nated
strategy for Cis defined anal ogously.

One way to decide how to game should be played is to
iteratively elimnate dom nated strategies. 1In the
case of Prisoner’s Dilemm, Remaining Silent is a dom -
nated strategy for both prisoners, and elimnating it
gives a gane in which both prisoners Confess.

a ‘Nash Equilibrium is a pair (r,c) such
that for every r', R(r,c) >= R(r’,c) and for every c’
C(r,c) >= C(r,c’). The Prisoner’s Dilemma has one Nash
Equi librium the pair where both players Confess.

G ven a gane,

G ven a gane you are asked to find all the domi nated

strategies and all the Nash Equilibria.

nasheq. t xt 10/ 12/ 09 00: 14: 48 2 of 3
You nust list ALL the dom nated R and C strategi es and

I nput all the Nash Equilibria and not have duplicates, but the

----- order does not matter. |Its possible that there will be

The input consists of test cases. Each test case begins
with a line containing the nane of the test case. This
is followed by a single Iline containing NR and NC in
that order, and this is followed by NR |lines each
cont ai ni ng NC nunber pairs, where each pair is witten
as ‘#/# where # stands for an integer. The c’'th pair
of the r'th line is R(r,c)/C(r,c).

1 <= NR, NC <= 20.
Sone of the input lines may be very | ong.

The input is termnated by an end of file.

For each test case, four lines, the first being a copy
of the first test case input line that contains the
test case nane. The remaining three lines, in order
are:

Dom nated R Strategies: rl1 r2 ..
Dom nated C Strategies: cl c2 ..
Nash Equilibria: (r1,cl') (r2,c2")

where r1, r2, ..., cl1, c2, are strategy nunbers
(integers from 1 through NR and 1 through NC respec-
tively) and (r1,cl1), (r2’,c2"), are strategy
pairs.

nothing after a ‘:’ on a line.
will be very | ong.
Sanpl e | nput

-- PRISONER S DI LEMVA - -

22

-6/-6 -120/0
0/-120 -60/-60

-- BATTLE OF SEXES --
22

0/0 2/1

1/2 0/0

-- MATCHI NG PENNI ES - -
22

/-1 -1/1

-1/1 1/-1

-- COURNCOT COVPETI TI ON, 3 GOODS

4 4
0/0 0/3 0/4 0/3

3/0 2/2 1/2 0/0
4/0 2/1 0/0 -2/-3
3/0 0/0 -3/-2 -3/-3

Sone of the output

PRI CE 5, COST 1

i nes

nasheq. t xt 10/ 12/ 09 00: 14: 48

3 of 3

Sanpl e Qut put

-- PRISONER' S DI LEMVA - -

Dom nated R Strategies: 1

Dom nated C Strategies: 1

Nash Equilibria: (2,2)

-- BATTLE OF SEXES --

Dom nated R Strategi es:

Dom nated C Strat egi es:

Nash Equilibria: (1,2) (2,1)

-- MATCHI NG PENNI ES - -

Dom nated R Strategi es:

Dom nated C Strategi es:

Nash Equilibria:

-- COURNOT COVPETITIQN, 3 GOODS, PRICE 5, COST 1
Dom nated R Strategies: 1 4

Dom nated C Strategies: 1 4

Nash Equilibria: (2,2) (2,3) (3,2)

File: nasheq. t xt
Aut hor : Bob Wl ton <wal t on@eas. harvard. edu>
Dat e: Sun Cct 11 23:19:29 EDT 2009

The aut hors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $

$Dat e: 2009/ 10/ 12 04:14:48 $
$RCSfil e: nasheq.txt,v $
$Revision: 1.7 $

myrsync. t xt 10/ 15/ 09 06: 29: 49 1 of

My Rsync

The UNI X rsync programcopies a file F at location L to
a renote location L' which is accessible fromL only by
sl ow communi cations. It optimzes the case where an

ol der version F' of the file already exists at L'. F
is divided into disjoint S byte blocks, and the M5
signatures of these blocks are communicated by L' to L
Then L sends to L' the bytes of F as follows: if the
next S bytes to be sent match a block of F, the identi-
fier of that block is sent, and otherw se the next byte
is sent. Here S bytes match a block in F if both have
the same MD5 signature, which is only 16 bytes, so L’
only has to send 16 bytes for every S bytes of F, and
this is faster than having L' send all of F if Sis
much greater than 16

However, if we do as we have said, then for every byte
of F the MD5 signature of the S byte block starting at
that byte would have to be conputed. This is too expen-
sive conmputationally.

So L' reports for every block both its MD5 signature and
a 32-bit rolling checksum L uses the rolling checksum
to find blocks in F that might with high probability be
identical to blocks in F', and then conputes the M5
signatures of just those blocks, to check if the bl ocks
are indeed identical

What do we nean by a rolling checksun? W are | ooking
at the sequence of S byte blocks of F that begin at al
the possible different byte offsets in F. Suppose we

have a pointer into F and relative to that pointer the
next S + 1 bytes are

B(0), B(1), B(2), ..., B(S1), B(S

An example rolling checksum for the current block is
b = (B(0) + B(1) + B(2) + ... + B(S-1)) nod 2**16

The val ue of this checksumfor the next block in the
sequence is

bnext = (B(1) + B(2) + ... + B(S-1) + B(S)) nod 2**16
= (b + B(S) - B(0)) nmod 2**16
That is, bnext can be conputed quickly fromb and the
byte B(0) we are discarding and the byte B(S) we are
adding to nmake the next block fromthe current bl ock
We call b a ‘rolling’ checksum because bnext can be
conput ed quickly fromb.

Anot her exanple of a rolling checksumis

c =(S$B0 + (S 1)*Bl + (S-2)*B2 + ... + 1*B(S-1))
nmod 2**16
for which
chext = (S*Bl + (S-1)*B2 + (S-2)*B3 + ... + 1*B(9))
nmod 2**16

(c + bnext - S*B0O) nmod 2**16

Here we use bnext to hel p conpute cnext. Lastly, we
can conbi ne these two rolling checksunms into one:

d=Db + 2**16 * c
which is the 32-bit rolling checksumthat we will use
Note that in the above a byte is an UNSIGNED 8 bit
i nteger (an ‘unsigned char’ in ¢ C++ , and as JAVA

does not have unsigned integer data, you nust convert
each byte to an int and then & with OxFF in JAVA).

myrsync. t xt

10/ 15/09 06: 29: 49 2 of

The standard input consists of test cases. Each test
case begins with a line containing the nane of the test
case. The second line of the test case contains a data
file name (the nane of F), and the third line contains
the block size. The lines following this each describe
one bl ock of the renote file F, and each of these |lines
hol ds an MD5 signature foll owed by a single space
followed by a rolling checksum The signature is 32

hexadeci mal digits (0, ..., 9, A ..., F), and the
rolling checksumis 8 hexadecinmal digits. The last Iine
of the test case contains just ‘.’, which signals the

end of the test case.

The input file nane will not contain any white-space
characters, and the block size will be a deci nal

nunber. No standard input line will be l|onger than 80
characters. The standard input will be term nated by an

end of file after the | ast test case.

You nust open each input file F for reading, and NOT for
witing. |f you open it for reading and witing, your
program may fail, and WORSE, it m ght work when you test
it and then fail when the judge tests it because when
the judge runs it your programw ll not be allowed to
open files for witing.

For each test case, first output an exact copy of the
first three lines of the test case: the test case nane,
the file name, and the block size. Then for each offset
infile F of a block whose rolling checksum natches

the rolling checksum of some bl ock of F, output the
line

of f set bl ock- nunber

where bl ock-nunber is the bl ock number of the bl ock

of FF whose MD5 sum nmatches that of the block of F at
the given offset, or is -1 if there is none. These
lines nmust be in order of increasing offset. The bl ocks
of F are nunbered 0, 1, 2 ..

Lastly output a line containing just ‘.’ to end the
test case output.

To conmpute an MD5 sum of an S byte bl ock:
In C

#i ncl ude <openssl/ md5. h>
unsi gned char signature[16];
unsi gned char bl ock[S];

... read block ...

MD5(bl ock, S, signature);

In C++:

extern "C' {

#i ncl ude <openssl/ md5. h>

}

unsi gned char signature[16];
unsi gned char bl ock[S];

... read block ...

MD5(bl ock, S, signature);

myrsync. t xt 10/ 15/ 09 06: 29: 49 3 of 4
I n JAVA: Sanpl e | nput
i mport java.security.*;
-- SAMPLE 1 --
static byte[] MD5 (byte[] block) sanpl el. dat
throws NoSuchAl gorit hnException 256

{
MessageDi gest nmd =
MessageDi gest . get I nstance ("MD5");
return nd. di gest (block);
}

Here the MD5 sumis called a signature and is represent-
ed as a 16 byte string, where each byte represents 2
hexadeci mal digits, with the first byte representing the
hi ghest order digits.

If you use gcc or g++ directly (instead of using the
Makefil e you are provided) you need to use the -1Iss
i brary option.

On nodern conputers conputation of MD5 suns is so fast
conpared to input/output CPU tine that we were unable
to construct sensible test cases where the optim zation
of using rolling suns to reduce the anmount of MD5 sum
conputation actually made a large difference in CPU
time.

0665A333D10B4F10495EDCD35E8F2904 94127CB5
7CB5FASEO37EFF272462C92867AFC1B9 BE387EB4
D94B841EB5F4C528ACFFA4D2BD068503 94127CB5

-- SAWPLE 2 --

sanpl e2. dat

4096

B26EBEE4ACB66A9CC513F48293E676CA9 FB23138E
6167E71B305291265C85B37F758DB1BB D217FCA6
87AC778780609BDF81C7E5C144BE48EA 48C909AF

Sanpl e Qut put

.. SAWPLE 2 --
00
8314 2

myrsync. t xt 10/ 15/ 09 06: 29: 49 4 of 4

File: nyrsync. t xt
Aut hor : Bob Wal ton <wal t on@eas. harvard. edu>
Dat e: Thu Cct 15 06:26: 44 EDT 2009

The aut hors have placed this file in the public domain
they make no warranty and accept no liability for this

file.
RCS Info (may not be true date or author):

$Aut hor: walton $

$Date: 2009/10/15 10:29:49 $
$RCSfile: nyrsync.txt,v $
$Revision: 1.13 $

conbi nat ors. t xt

10/15/09 06:31:17 1 of

Conbi nat ors

The | anbda cal culus is a neans of representing
functions by neans of ‘| anbda-expressions’ that have the
synt ax

| anbda-exp ::= variable

| (Ianbda-exp | anbda-exp)

| (\ variable . |anbda-exp)
variable ::= single |l ower case letter

For exanple, (\x.x) represents the identity function
that maps an argunent x onto itself. ((\x.x) vy)
represents the application of this function to the
variable y. It happens that this application can be
reduced as ((\x.x) y) =>vy. 1In general ((\x.Mx]) N =>
M N where M x] denotes any | anbda- expressi on possibly
containing the variable x, Nis any | anbda-expression
and MN is Mx] with N substituted for the ‘free’
occurrences of x. However, you will not need to conpute
applications in this problem so we will not get into
details (such as what ‘free’ nmeans).

Here were use ‘\’ to denote the Greek letter ‘| anbda’.

The conbi natorial cal culus is another way of expressing
functions that uses the syntax:

c-expression ::= variable
| (c-expression c-expression)
| K
| S

variable ::= lower case letter

where ‘c-expression’ is shorthand for ‘conbinatoria
expression’, and K and S are constant functions. |In the
conbi natori al cal cul us application is conmputed using the
rul es

((KMN) => M
(((SMNP) => ((MP)(NP))
for any c-expressions Mand N. These rules are sinpler

than the rules for | anbda-cal culus, in the sense that
there is no need to substitute for vari abl es.

A | anbda- expression can be rewitten into an equival ent
conbi nat ori al expression using the follow ng rul es:

(\v.w => (Kw)

(\v.K) => (KK)

(\v.S) => (KS)

(\v.v) => ((SK)K)

(\v. (M) => ((S(\v.M)(\Vv.N)

for any DI STINCT variables v and w and any expressions
M and N

You are asked to convert | anbda-expressions into
c-expressions using this last set of rules.

Noti ce that you may have to apply these rules to sub-
expressions before you can apply themto containing
expressions. Thus

(\x. (\y.x)) => (\x. (Kx)) => ((S(\x.K))(\x.x))
=> ((S(KK)) ((SK) K))

conbi nat ors. t xt

10/15/09 06:31:17 2 of

The input consists of test cases. Each test case begins
with a line containing the nane of the test case, and
this is followed by a single |ine containing a | anbda-
expression. There are no spaces in the | anbda-expres-
sion line, and no input test case line is longer than

80 characters. The input is termnated by an end of
file.

For each test case, three lines, the first two being
copies of the two test case input lines, and the third
contai ni ng the equival ent c-expression, as conmputed by
the above conversion rules. The last |line may be very,
very | ong.

Note that both input and output are fully parenthesized;
there are NOinplicit parentheses in either. Also
there are no whitespace characters inside expressions.

Sanpl e | nput

-- I DENTITY --
(\ x.x)
-- APPLI CATION - -

(\Xk(\y- (xy)))
(\x. (\y.x))

Sanpl e Qut put

-- I DENTITY --

(\ x.x)

((SK) K)

-- APPLI CATI ON - -

(\x. (\y.(xy)))
((S&(S(KS))((S(KK))((SK)K))))((S((S(KS))(KK)))(KK)))
(\x. (\y.x))

((S(KK)) ((SK) K))

Fil e: conbi nat ors. t xt
Aut hor : Bob Wal ton <wal t on@eas. harvard. edu>
Dat e: Thu Oct 15 06:30:59 EDT 2009

The aut hors have placed this file in the public domain
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $
$Dat e: 2009/10/15 10:31:17 $
$RCSfile: conbinators.txt,v $
$Revision: 1.10 $

| ogi stic.txt

10/ 14/ 09 20:51:52 1 of

Logi stic Popul ati on G- owth

Logi stic population growh is given by the equation
dNdt = rN(1 - NK)
wher e

is the time

N is the current population (a function of t)
is the population growth rate, a constant
Kis the carrying capacity of the environnent,
a constant (we allow this to be non-integral)

—

-

The popul ation starts froman initial value N(0) at
t = 0 and grows or shrinks exponentially until it
approxi mately equals K

The above equati on has the sol ution
N(t) =K/ (1 +F*exp (-rt)))

wher e
F=(K-NO))/ NO)

These equations define what is called a ‘deterministic
nodel . Real population growth curves tend to wander
fromdetermnistic nodel predictions unless Nis |arge,
as we will show in this problem

Popul ati on growm h can be nore carefully nodel ed by

a ‘stochastic nodel’. To build this nodel we define
B(N) = max (0, (b0 - b1 * N) * N) Birth rate
D(N) = (d0O +dl1 * N * N Death rate
P(N, t) probability that the population is N at

tinme t

b0, bl, dO, dl1 >= 0 are constants of the node

Fromthis we get the stochastic differential equation

dp(N, t)/dt = - p(Nt)*(B(N) + D(N))
+ p(N+1,t) *D(N+1)
+ p(N-1,t)*B(N-1)

Here the correspondi ng determ nistic nodel is

B(N) - D(N)
((b0 - d0) - (bl + dl) * N) * N

dN/ dt

so conparing to the above we get

r = b0 - dO
r/K = bl + dl
hence
K= (b0 - d0) / (bl + dl1)

For the stochastic nodel all four constants b0, bl, dO,
dl are needed to define the nmodel, but for the determ n-
istic nodel only r and K are needed.

The deterministic initial condition N = N(O) is equiva-
lent to the stochastic initial condition p(N,0) = 1 and
p(n,0) =0 for n!=N

Integrating the stochastic differential equation to find
p(N,t) turns out to be difficult, even nunerically using
a conputer. But there is a steady state where all the
dp(N,t)/dt = 0, and we can solve for the p(N;t) in this
steady state. Call these steady state probabilities
P(N), and then replacing dp(N,t)/dt by O and p(N,t) by
P(N) in the above equation we get

0=- P(N*(B(N) + D(N))
+ P(N#+1) * D(N+1)
+ P(N-1) *B(N 1)

| ogi stic.txt

10/ 14/ 09 20:51:52 2 of

This equation in turn can be rewitten as

P(NF1) *D(N+1) - P(N)*B(N) = P(N*D(N) - P(N-1)*B(N-1)

= G a constant independent of N
For N =0 this equation is
P(0)*D(0) - P(-1)*B(-1) =0
and if D(0) = P(-1) = 0 we have G = 0. Thus

P(N+1) = P(N)*B(N)/D(N+1) if D(N+1) != 0

We have B(0) = 0 and D(N) > 0 for N>= 1 and this
=0 for N> 0, which
is the “extinction solution’ and is not very interes-

gives the solution P(0) =1, P(N)

ting.

However, if we assunme that extinction never actually

occurs, this is equivalent to assumi ng that P(0)
and throwi ng out the equation

P(0)*D(0) - P(-1)*B(-1) = G
Then we have
P(1)*D(1) - P(0)*B(0) = G
and as P(0)= 0, G= P(1)D(1). W thus get
P(Nt1) = (P(N*B(N) + P(1)*D(1))/D(N+1)
and if we set
Q1) =
QN+D)

=

(AN*B(N + Q1)*D(1))/D(N+1)

t hen

P(N = QN)/(sum QN for all N >= 1)

whi ch normalizes P(N) so the sum of the probabilities
is 1.

Note that to actually sumthe QN in a conmputer you
need to stop summng at sone finite value of N. In our
case B(N) = 0 when N >= b0/bl, and
sum(Q1)/D(N) for N> L) <= Q1)/(d1*L)
(because (sum 1/ N**2 for N> L) is <= 1/L), so if we set
L = max (b0/bl, 1/d1))
the sumof QN for N> L will be at nost 1), which we
expect to be very small part of the total sum so we

restrict the summng to 1 <= N <= L and our equation
becones

P(N) = QN/(sum QN for 1 <= N<=1)

Gven this we define the steady state statistics of the
nodel as

MEAN = steady state nean of N

=sunm(N* P(N for 1 <= N<=1)
VAR = steady state variance of N

= sunm((NNMEAN)**2 * P(N) for 1 <= N<=1L)
STD = steady state standard deviation of N

= sgrt (VAR)

Lastly a simulation of the stochastic nodel can be
i mpl enented by the foll ow ng pseudo-code

| ogi stic.txt 10/ 14/ 09 20:51:52 3 of

N N(0)
t 0
| oop:
choose tine s to next event

choose whet her next event is birth or death
if next event is birth: N= N+ 1

else if next event is death: N=N- 1

t =t +s

(0]

O

Events occur at the rate R(N) = B(N)+D(N) so s is an
exponentially distributed random vari abl e such that

probability {s’ =>0: s’ <=s} =exp (- RN * s).
Note that this equals

probability {s’ => 0 : exp(-R(N)*s’) >= exp(-R(N)*s}
soif weset Y=exp(- RN) * s) we get
probability {s’ => 0 : exp(-R(N*s’) >=YVY} =Y

and Y = exp(-R(N)*s) is therefore uniformy distributed.
So we can choose s by

to choose s:
pi ck a pseudo-random uni formy distributed
nunmber Y, 0 <= Y <= 1.
set s = - (In Y)/R(N)

The relative probabilities of births and deaths are B(N)
and D(N) so

to choose whether the next event is a birth or
a deat h:
pi ck a pseudo-random uniformy distributed
nunber Y, 0 <= Y <= 1.
if Y<=B(N)/(B(N)+D(N)) the event is a birth
otherwise it is a death

If N==0, then B(0) = D(0) = R(0) =0, and this is a
special case in which Nis stuck at 0 forever.

By now you must have guessed that you are going to be

asked to compute all the above. Furthernore, you nust
get very precisely the sane answers as the judge. To

do this you need to use doubl e precision floating point
nunbers and the foll owi ng pseudo-random nunber genera-
tor:

C or C++:

| ong | ong seed;
doubl e randomY (void)

{
seed = 16807 * seed;
seed = seed % 2147483647
return doubl e(seed) / 2147483646;
}
JAVA:
| ong seed;
doubl e randomyY (void)
{
seed = 16807 * seed,;
seed = seed % 2147483647
return doubl e(seed) / 2147483646;
}
You will be given an initial value of seed, and for each

pseudo-random nunber Y you need (including the first),
you call random Y().

For each of several test case, first a line containing
just the name of the test case. Then a |ine containing

| ogi stic.txt

10/ 14/ 09 20:51:52 4 of

b0 bl dO d1 N(O) Tsize Nsize Tinc Ninc

where b0 .. N(O) define the nodel, Tsize is the nunber
of lines in the plot to be produced bel ow, Nsize is
t he nunber of columms in each of these lines, Tinc is
the ampunt tine is increnented between these |ines,
and Ninc is the ambunt N is incremented between col ums
of these lines.

b0, bl, dO, dl1l, Tinc, Ninc are floating point

N(O), Tsize, Nsize are integers

0 <= b0, bl, dO, di
N(0)
0 < Tsize <= 100

0

N

0 < Nsize <= 80

0 < Tinc

0 < Ninc
The lines of a test case between the second |ine of
the test case and the last |line of the test case
each have the form

C seed

where Cis the display character for plotting (see
‘Qutput’ below) and seed is a pseudo-random nunber
gener at or seed:

0 < seed < 2147483647 (== 2**31-1)

The last line of a test case contains just

I nput ends with an end of file.

For each test case, first output an exact copy of the
first test case input |ine which names the test case.

Then out put a plot containing Tsize |lines each with
Nsi ze colums. The T+1'st |line corresponds to the
timet = T*Tinc (so the first line corresponds to

t =0). To plot a nunmber x with a display character
Con a line, put the character Cin colum

round (x / Ninc) + 1
where ‘round’ rounds to the nearest integer
For each seed you are to plot the sinulation using
that seed with the di splay character given on the
same input line as the seed. Note that display
characters froma sinulation may overwite display
characters froma previous sinulation
Then you are to plot the deterninistic nodel N(t)
using the display character “*’. Note that this
di spl ay character may overwite simulation display
characters.

There should be NO TABs in any plot line. You may end
a plot line with single space characters.

After the plot output the |ine:
r = #, K=#, MEAN = #, STD = #

where the #' s are as foll ows:

| ogi stic.txt

10/ 14/ 09 20:51:52 5 of

bO - dO is the rate of popul ation growh when
N is smal

_1
1

K

(b0 - dO) / (bl + d1) is the carrying capacity

MEAN = nean of the stochastic steady state as
conput ed above

STD = standard devi ation of the stochastic steady
state as conputed above

Print all the # s to at | east 2 decinal places.

Note the spacing required in this line: ‘'="s are sur-
rounded by whitespace and ‘,’s are followed by white-
space but NOT preceded by whitespace. Al so, you may NOT
use TABs in this line. Failure to observe these rules
may result in a ‘format error’ score.

Note that as decisions requiring conparison of floating
poi nt val ues are made, output in general will be sensi-
tive to floating point accuracy. However, the judge
has tuned the judging input so if you use double prec-

i sion and follow the above formul ae exactly, you will
get exactly the plot the judge gets, and you are in
fact required to do so. One thing to be careful of is
the order in which you use the val ues returned by
random Y(); specifically you nmust choose s BEFORE you
choose whether the event is a birth or death.

Note that a ‘format error’ score mght nean that you
have plotted display characters in the wong col ums but
have sonehow nanaged to get the right display character
overl ays, so you may consistently be a colum off.

The sinul ations reveal that after a popul ati on reaches
capacity it wanders enough that it does not appear
stable. This is because the standard deviation of the
stochastically stable solution is not that small

Therefore
determnistic stability
I =
apparent stochastic stability
Sanpl e | nput
-- SAMPLE 1 --

2.2 0.20.10.1115500.50.25
X 838765873
098763498
@ 162738493

-- SAMPLE 2 --

10.1 0.1 0.0 0.1 10 15 50 0.10 1.2
X 898765873

098763498

@ 62738493

| ogi stic.txt

10/ 14/ 09 20:51:52

6 of

Sanpl e Qut put

-- SAMPLE 1 --
*
X* @
#
#

#
#

#
X

>(->(->(->(->(->(->(->(->(—©

@
@ #
X
#
X
#
@ X
@
@
@ x
@

r =2.10, K= 7.00, MEAN = 6.54, STD = 1.75

-- SAMPLE 2 --
*

X

*

X *@
X @F
*X @#

r = 10.10, K = 50.50, MEAN = 49.99, STD = 5.05

#

File: | ogi stic.txt
Aut hor : Bob Wal ton <wal t on@eas. harvard. edu>
Dat e: Wed COct 14 20:50:13 EDT 2009

The aut hors have placed this file in the public donain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $

$Date: 2009/10/15 00:51:52 $
$RCSfile: logistic.txt,v $
$Revision: 1.16 $

