
help_index 10/08/09 11:06:38 1 of 1
HELP INDEX Thu Oct 8 11:06:38 EDT 2009

Contest Description
------- -----------

formal_contest
 About formal contests, including logging in.

informal_contest
 About informal contests, including logging in.

untimed_contest
 About untimed contests, including logging in.

xterminals
 How to make windows if you are using an
 xterminal emulator.

Solving Problems:

solving
 How to write a solution file, how to test it,
 how to submit it, if you have been given a
 contestant account.

email_solving
 How to write a solution file, how to test it,
 how to submit it, if you are using your own
 personal account.

input
 Advice on input formats.

output
 Advice on output formats.

print
 How to print files.

commonlisp
 How to write COMMONLISP solutions.

Scores and the Scoreboard:

scores
 How to find out your scores, and also how to
 ask questions of the judge.

scoreboard
 Interpreting the scoreboard notation.

Advice:

c++
 Special C++ advice.

java
 Special JAVA advice.

advice
 Polonic advice on how to select problems and
 find errors.

Advice on Specific Kinds of Problems
------ -- -------- ----- -- --------

dynamic_programming
 Solving dynamic programming problems.

2D_geometry
 Solving 2D geometry problems.

breadth_first_search
 Solving problems (e.g. mazes) with breadth first
 search.

formal_contest 09/28/06 17:15:16 1 of 1
Formal Contest Help Thu Sep 28 17:14:22 EDT 2006

A formal contest is a contest in which you are provided
with an account and at which problem descriptions are
passed out at the start of the contest.

Normally all contestants run on the same fast computer.
This means that all contestants are subject to the same
load. There may be differences in terminals assigned to
contestants. To ensure fairness, terminals are assigned
to contestants at random (e.g., by using dice throws).

Rules for Formal Contests:
----- --- ------ --------

The contest managers will log in for you. You may or
may not be given an X-Terminal equivalent. If you are,
you can make more windows using xcsh: see ‘help
xterminals’. If not, you must ask the contest managers
to make more windows for you. Usually in this case all
teams are given the same number of windows to start
with: typically 4. You will NOT be given any password.

For formal contests you are assigned a location and
account name. Please type ‘who am i’ to be sure you
have the right account.

In a formal contest your printouts will be brought to
you. Do NOT try to find the printer. If a printout has
not been brought to you promptly, ask the contest sup-
port personnel to check the printer.

During a formal contest you may not use web browsers or
electronic communication that is not directly part of
the contest. You may bring and use any printed matter-
ial you like. There is a contest command, javahelp, for
on-line Java documentation: see ‘help java’. There is
a contest command, stlhelp, for viewing on-line C++
Standard Template Library documentation, if this docu-
mentation is available: see ‘help c++’.

During a formal contest the alternative submit commands
‘make in-submit’, ‘make inout-submit’, and ‘make
solution-submit’ are NOT allowed.

A few days or so after the contest ends you will be
given the name and password of your contest account so
you can collect the code you wrote. At this point the
contest will be reconstituted as an untimed contest,
so you can additionally submit new code to the auto-
judge, though of course it will not count in the already
finished formal contest.

File: formal_contest
Author: Bob Walton <walton@deas.harvard.edu>
Date: See top of file.

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2006/09/28 21:15:16 $
 $RCSfile: formal_contest,v $
 $Revision: 1.10 $

informal_contest 03/11/06 09:16:35 1 of 1
Informal Contest Help Sat Mar 11 09:04:12 EST 2006

Informal contests are a way of practicing for formal
contests using timed scoring. In an informal contest
you get each problem individually, and typically get the
problem description as a file only when you hpcm_get the
problem. The start time of the problem is either the
time you hpcm_get the problem, or the time you hpcm_get
the first problem in the contest.

An informal contest can be set up so each team can par-
ticipate at a different time, say one on Sunday after-
noon and another on Tuesday evening. Or an informal
contest can be set up so each contestant can solve each
problem at a different time.

For some informal contests you get problem descriptions
from the web or on paper, and are on your honor not to
look at them until you hpcm_get problems. Or in some
contests you may look at and discuss the problems in
advance, but are on your honor not to type anything
concerning the problem into a computer until you hpcm_
get the problem.

Rules for Informal Contests:
----- --- -------- --------

You will be given a contest account name and a password,
either by email or on a sheet of paper. You can log
into the contest account from anywhere (e.g., if there
are not enough terminals in one place you can go to any
other place, or you can work at ‘home’).

You must use the secure shell (ssh) to log into the
contest computers. You may use an X-Terminal equivalent
(X-server) in combination with ssh. If you use an
X-Terminal equivalent, you can make new windows easily
with xcsh: see ‘help xterminals’.

You may be able to use the print commands in an informal
contest, if you are located in the same building as the
printer. The command ‘printer’ will tell you the name
of your printer, if one exists. If you have no printer,
or want to change your printer, you can set up your
account to use the printer of your choice or to e-mail
postscript files of printouts to the e-mail address of
your choice. See ‘help print’.

The ‘scoreboard’ and ‘help’ commands work for an
informal contest.

If you are simulating a formal contest precisely, you
will not be allowed to use the alternative make commands
that ‘in-submit’ or ‘inout-submit’. However ‘solution-
submit’ may work.

Your contest account will normally remain for some
longish period of time after the contest so you can
log in and email out your solutions, in order to save
them.

File: informal_contest
Author: Bob Walton <walton@deas.harvard.edu>
Date: See top of file.

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: hc3 $
 $Date: 2006/03/11 14:16:35 $
 $RCSfile: informal_contest,v $
 $Revision: 1.7 $

untimed_contest 09/28/06 17:15:16 1 of 1
Untimed Contest Help Thu Sep 28 17:14:51 EDT 2006

Untimed contests are an alternative to timed programming
contests. One common way of scoring untimed contests is
feedback scoring, in which contestants may get feedback
from an autojudge giving the judge’s input or output for
failed test cases, and the number and kinds of feedback
determine a ranking score for each problem a contestant
eventually solves correctly.

Because these contests are untimed, they generally have
a web page containing the problem descriptions. Contes-
tants may be given account names and passwords, or may
be allowed to work on their own computers and simply
email submissions to the autojudge.

Rules for Untimed Contests:
----- --- ------- --------

If you are given a contest account name and a password,
you can log into your contest account from anywhere.
You must use the secure shell (ssh) to log into the
contest computers. You may use an X-Terminal equivalent
(X-server) in combination with ssh. If you use an
X-Terminal equivalent, you can make new windows easily
with xcsh: see ‘help xterminals’. See ‘help solving’
to see how to solve problems in this account. See
‘help print’ to see how to make a ˜/PRINTER file that
will route printouts to a email address of your choice.

If you are not given a contest account name and pass-
word, you will be given an email address to which you
can send submissions. Read the ‘email_solving’ help
file to see how to solve problems using your own
personal account and this email address. You cannot
use the standard HPCM commands in your own personal
account, of course, UNLESS you import the email UNIX
tools described in the email_unix_tools help file.

File: untimed_contest
Author: Bob Walton <walton@deas.harvard.edu>
Date: See top of file.

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2006/09/28 21:15:16 $
 $RCSfile: untimed_contest,v $
 $Revision: 1.4 $

xterminals 04/25/06 06:12:13 1 of 1
X-Terminals Help Tue Apr 25 06:11:29 EDT 2006

This file is for those who are using an account provided
by the contest managers, and who are logging into that
account using ssh with X-windows. Note that to do this
from UNIX you may need to use the -X option to ssh, as
in
 ssh -X someaccount@somecomputer

Creating Windows with Xcsh

To create a new window you may use the command:

 xcsh Start a new X terminal window running csh.

 The new window tends to form directly over
 the top of the leftmost existing window, so
 one of these windows has to be moved.

Xcsh takes options that change the font and location of
the window formed. To try a different font, use the
command

 xcsh PPm

where PP is the point size (e.g., 12, 16, 18, 24) de-
sired and ‘m’ indicates you want a medium font. This
command will list the available font names that begin
with PPm, and any of these can then be used as an option
to xcsh. For example, if the command ‘xcsh 18m’ outputs
‘use one of 18ml 18ma 18mb’, the command ‘xcsh 18ml’
would use an 18 point medium font of style ‘l’.

If you want a bold font, replace ‘m’ in ‘PPm’ by ‘b’.

To get more complete documentation of xcsh type the
command ‘xcsh -doc’.

Destroying a Window
---------- - ------

To destroy a window just type the command ‘exit’, or if
that does not work, ‘logout’.

BUT BE CAREFUL not to destroy your original (root)
window as doing that may destroy all other windows.

File: xterminals
Author: Bob Walton <walton@deas.harvard.edu>
Date: See top of file.

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: hc3 $
 $Date: 2006/04/25 10:12:13 $
 $RCSfile: xterminals,v $
 $Revision: 1.8 $

solving 12/23/06 02:09:23 1 of 6
Solving Problems Help Sat Dec 23 02:10:02 EST 2006

This help file is for contestants who have been given an
account, or for contestants using their own accounts
with the tools described in the email_unix_tools help
file. Contestants using their own accounts without the
tools just mentioned should read the email_solving help
file instead of this help file.

What Problems?

When you first log in, there are no problems. You have
to get the problems with the ‘hpcm_get’ command.

To get the demonstration problems before the contest
starts, you can just type the command

 hpcm_get

The demonstration problems are put in the ‘demos’ subdi-
rectory of your home directory (you can always get to
this with the ‘cd ˜/demos’ UNIX command, where ‘˜’ de-
notes your home directory).

In a formal contest, you need to REPEAT the above
‘hpcm_get’ command again, JUST ONCE, AFTER the contest
starts, to get all the problems.

In some informal contests you need to get each problem
one at a time, using the command

 hpcm_get problems/pppp

to get the problem named ‘pppp’.

In other contests, the first ‘hpcm_get’ gets ALL the
problems, not just the demonstration problems.

The contest problems are put in the ‘problems’ subdirec-
tory of your home directory (you can always get to this
with the ‘cd ˜/problems’ UNIX command).

Each problem has its own subdirectory in the ‘problems’
subdirectory. Thus a problem named ‘pppp’ would have
a problem directory named ‘˜/problems/pppp’.

You can display an index of the problems and sometimes
an estimate of their relative difficulty by using the
command:

 help problems

Asking Questions:

You may think that a problem description is ambiguous,
and ask the judges for clarification, though you should
be careful to think the situation through thoroughly
first. You may e-mail such questions to the judges, but
the method to do this from an account provide to you is
a little weird. First, edit your email into a file of
your own choosing. If your first line has the form

 Subject:

and the next line is completely empty (no spaces),
then the first line will be the subject line of the
message. Then

 hpcm_sendmail < filename

to send the file as email to the judges.

Note that the subject must NOT begin with the words
‘submit’ or ‘get’.

solving 12/23/06 02:09:23 2 of 6

If you ask for a clarification by e-mail, and a signifi-
cant answer is given, that answer will be given by post-
ing it on the scoreboard so everyone can see it. You
will not receive email back in this case.

Working on a Problem

For a problem named ‘pppp’ you should write a file named
‘pppp.c’, ‘pppp.cc’, ‘pppp.java’, or ‘pppp.lsp’ in your
‘problems/pppp’ directory. The suffix of the file you
write determines the programming language you are using:

 .c for C
 .cc for C++
 .java for JAVA
 .lsp for COMMONLISP

You must write only ONE of these files; you CANNOT
have a solution in two different languages at once.

The description of a problem named ‘pppp’ is in a file
named ‘pppp.txt’, ‘pppp.html’, ‘pppp.htm’, ‘pppp.ps’, or
or similar printable file. This file may or many not
be given to you electronically. In a formal contest, it
is not, but instead a printout of the file is given to
you at the start of the contest. In informal contests,
the problem description file is gotten into the problem
directory by hpcm_get, and you must print it yourself or
look at it with an editor, browser, or postscript dis-
play program. In untimed contests, the problem de-
scription file is typically a subpage of the contest web
page, although the file may also appear in the problem
directory.

Your program should be written to take input from the
terminal and put output to the terminal. In C this
means using functions such as ‘gets’, ‘scanf’, and
‘printf’ that implicitly use ‘stdin’ for input and
‘stdout’ for output. In C++ this means using ‘cin’ and
‘cout’. In JAVA this means using ‘System.in’ and
‘System.out’. In COMMONLISP this means using
‘*standard-input*’ and ‘*standard-output*’.

You should NOT, repeat NOT, write output to the standard
error output, ‘stderr’, ‘cerr’, ‘System.err’, or
‘*standard-error*’. Such output will result in a
‘Program Crashed’ or ‘Cpu Time Limit Exceeded’ score.

You should NOT under any circumstances open a file in
your code. In the judge’s program execution environ-
ment, output operations on opened files fail, in order
to protect the judge’s software from wayward submis-
sions. Since you will likely not be checking for output
failures in your code, your code will mysteriously pro-
duce no output in the judge’s environment if you open an
output file, and will be scored ‘Program Crashed’ if
your program terminates, or ‘Cpu Time Limit Exceeded’ if
your program fails to terminate because all your input
instructions have become no-operations.

When the autojudge executes your program, it will be
called with NO program arguments. You can use this fact
to write out debugging information to the standard out-
put IF your program is called with one or more program
arguments.

solving 12/23/06 02:09:23 3 of 6

If you edit an input file named ‘pppp.in’ in the problem
directory, then the following UNIX commands can be exe-
cuted in the problem directory. You can try them out
using the demonstration problem in the ‘˜/demos/count’
directory. You can try ‘make submit’ in this directory,
and the judges will ‘judge’ the demo submission, though
of course it will not count. See the README file in
this directory for more instructions.

 make Same as ‘make pppp.out’ (see below).

 make pppp Makes the binary program file ‘pppp’ by
 running gcc on pppp.c, or g++ on
 pppp.cc, javac on pppp.java, or a
 commonlisp compiler on pppp.lsp,
 depending upon which of pppp.c, pppp.cc,
 pppp.java, or pppp.lsp exist. Does
 nothing if ‘pppp’ is more up to date
 than pppp.c, pppp.cc, etc.

 In addition to making ‘pppp’, other
 files may be made for some languages,
 such as pppp.class which is made from
 pppp.java, or pppp.fas which is made
 from pppp.lsp.

 make pppp.out
 Makes ‘pppp’ as above and then runs it
 with standard input coming from the file
 pppp.in. Puts the standard output in
 the file pppp.out, and then copies that
 to the screen. Puts any standard error
 output to the screen before the standard
 output from pppp.out. Does nothing,
 however, if pppp.out is more recent than
 both pppp.in and pppp.

 make pppp.debug
 Ditto but runs ‘pppp debug’ instead of
 ‘pppp’ and puts the standard output in
 the file ‘pppp.debug’ instead of
 ‘pppp.out’. You should write your
 program to output debugging information
 to the standard output if the program is
 given any arguments.

 make debug Same as ‘make pppp.debug’.

 make submit
 Makes ‘pppp.out’ just to be sure that
 nothing crashes, and then e-mails
 pppp.c, pppp.cc, ppp.java, or pppp.lsp
 to the judges. Note the pppp.in file
 MUST exist to submit, to make pppp.out,
 but pppp.in can be the minimum needed to
 keep your program from crashing (often
 pppp.in can be empty).

 There are alternative forms of this
 command used in untimed contests: see
 ‘Submission Alternatives’ below.

 make clean Removes ‘pppp’ and pppp.out.

The ‘make’ UNIX commands work because of the way the
‘Makefile’ file in the problem directory is written.
It is this file that causes ‘pppp.in’ to be presented
to your program as if it were input from a terminal,
and causes output your program writes to a terminal to
be stored in ‘pppp.out’ instead.

solving 12/23/06 02:09:23 4 of 6

The ‘Makefile’ file contains some oddities resulting
from the fact that judges, who use the same ‘Makefile’
as contestants, run solutions in a sandbox account that
has permission problems accessing judge’s files. Any
file, directory, or program that must be accessed from
the sandbox account may need permissions making it
accessible to everyone.

Common Mistakes
------ --------

If you get a ‘Program Crashed’ or ‘Cpu Time Limit Ex-
ceeded’ score, check that you DO NOT OPEN any files.
You should just read the standard input and write the
standard output. If you open .in and .out files, it
will work for you, but not for the judge. The judge
runs your program in a protected mode in which opening
a file fails because you do not have permissions.

Assuming you do not check for opening or input/output
errors, all your input and output operations may turn
into no-operations. If because input operations are
no-operations you loop infinitely, you will get the
score ‘Cpu Time Limit Exceeded’. Otherwise you will
get the score ‘Program Crashed’, either because your
program wrote no output since output operations are
no-ops, or because JAVA checks for errors automatically
and you get an uncaught input/output exception.

If ‘make submit’ tells you it cannot make a .in file,
that is because you must edit a pppp.in file in order to
keep ‘make submit’ happy. The pppp.in file can be the
minimum needed to keep your program from crashing (often
pppp.in can be empty).

It is important to run your program on the Sample Input
and carefully check that the output produced matches the
Sample Output. In particular, be sure any lines that
begin or separate test cases are correct.

Submission Alternatives
---------- ------------

In some contests, particularly untimed contests with
‘feedback’ scoring, there are alternative ways of sub-
mitting a problem:

 make submit Returns just score.

 make in-submit Returns score, and when practi-
 cal, returns the judge’s input
 for the first failed test case.

 make inout-submit Ditto but returns both judge’s
 input and judge’s output for the
 first failed test case.

 make solution-submit Returns score, and if the
 score is ‘Completely Correct’,
 also returns the judge’s solu-
 tion to the problem.

solving 12/23/06 02:09:23 5 of 6

The scoreboard in a ‘feedback scored’ contest is not
based on time, but is instead based on the kinds of
submission you do when your solution is still incorrect.
Using ‘make submit’ to submit an incorrect solution
invokes the least penalty, using ‘make in-submit’ a
greater penalty, and using ‘make inout-submit’ the
greatest penalty. There is no penalty for a correct
submission, and ‘make solution-submit’ behaves like
‘make submit’ for an incorrect submission. Timed
contests and some other contests disallow most of these
kinds of submit, in which case the disallowed submis-
sions behave like ‘make submit’ (but also return a note
saying they are not allowed).

If you have already submitted a correct solution, you
can resubmit with a ‘solution’ qualifier to get the
judge’s solution, without any affect on your score.

Timed contests and some other contests disallow most
submission qualifiers, in which case the submissions
with disallowed qualifiers behave as if they had no
qualifier (except they also return a note saying the
qualifier was disallowed).

Resource Limits
-------- ------

If you look at the ‘Makefile’ in the problem directory
you will see that it contains memory and time resource
limits which constrain your problem. Memory limits
are typically several megabytes and time limits are
typically 10 to 60 seconds. Harder problems require
care to be sure you stay within these limits.

Most problems are such that solutions in C or C++ will
run in a few seconds. If you have long running times,
you may have chosen an algorithm too inefficient to
avoid the time limit.

Debugging

The best way to debug is to include code that prints
extra debugging information to the standard output if
your program is passed any arguments. For C, such
code might look like:

int debug;
#define dprintf if (debug) printf

int main (int argc)
{
 debug = (argc > 1); // # arguments = argc-1.
 . . .
 dprintf (...);
}

See the C++, java, and commonlisp help files for debug-
ging in other languages.

The ‘make debug’ command (see above) calls your program
with one argument and puts the output in ‘pppp.debug’.

For program crashes and infinite loops, it is quickest
to use a debugger, if you have minimal familiarity with
one of the available debuggers. A typical usage is

 gdb pppp
 run < pppp.in
 ... program crashes, or control-C is pressed ...
 ... to get out of an infinite loop ...
 back [this lists frames]
 frame # [# is number of correct frame]
 list [lists code near crash]
 p EXP [print value of expression EXP]

solving 12/23/06 02:09:23 6 of 6

To debug, you do not have to use pppp.in and make
pppp.out. You can just make pppp and run it as a UNIX
command, typing input at it. BUT, to submit you must
have some pppp.in file, though it can be the minimum
needed to keep your program from crashing (often it can
be a zero length file). Also, the resource limits will
not be applied if you do not use pppp.in and ‘make’.

The contest staff will answer questions about debuggers
and editors as best they can.

Other Issues
----- ------

The following help commands may be useful for:

 Printing files: help print

 Understanding problem scores: help scores

 Understanding the scoreboard: help scoreboard

File: solving
Author: Bob Walton <walton@deas.harvard.edu>
Date: See top of file.

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2006/12/23 07:09:23 $
 $RCSfile: solving,v $
 $Revision: 1.20 $

email_solving 09/28/06 19:14:22 1 of 4
Email Solving Problems Thu Sep 28 19:10:01 EDT 2006
Help

This help file is for contestants who are using their
own personal computer account to solve problems and are
submitting those problems by email, and who are also NOT
using the email UNIX tools described in the email_unix_
tools help file. Contestants using an account given
them by those who run the contest, or who are using the
email UNIX tools, should read the ‘solving’ help file
instead. Contestants using the email UNIX tools should
read the ‘solving’ and ‘email_unix_tools’ help files.

Communicating with the Autojudge
------------- ---- --- ---------

You communicate with the autojudge by email. The auto-
judge has an email address which should be on the
contest web page, or which you were otherwise given.

All messages should be PLAIN TEXT and NOT HTML. If a
file is to be put into a message, it should be INSERTED
into the body and NOT ATTACHED. Unless instructed
otherwise, the file should be the ONLY thing in the
message body. If a file is not to be included in the
message, the message body should be COMPLETELY EMPTY.

A file included in a message should NOT have a line con-
taining the character string ‘File: FFFF’ in its first
block of non-blank lines, where FFFF is character string
ended by whitespace or a line end, unless FFFF is the
SAME as the file name in the ‘Subject:’ field of the
message.

Help Files

The help and demonstration files should be on the web,
e.g., should be linked from a web page for the contest.
If not, you can get them by sending TWO emails to the
autojudge with an EMPTY BODY and the subjects

 Subject: get help

 Subject: get demos

The return email will have multiple files per message,
with the files separated in an obvious way.

What Problems?

The problem descriptions may be on the web, but if you
are in a timed contest, the problem descriptions will
NOT (usually) be on the web, and you will have to get
the problem descriptions by sending email. When you do
this you will start the clock that times how long it
takes you to solve a problem. If you are getting your
problem descriptions from the web, you can skip this
section.

To get a problem named pppp you send email to the con-
test autojudge with an EMPTY BODY and

 Subject: get problems/pppp

You will get back a problem description file and a
Makefile. The Makefile may not be of any serious use to
you if you do not have UNIX for your personal account,
but it does contain information on time and memory
limits that the judge uses when testing a submission.

email_solving 09/28/06 19:14:22 2 of 4

There should be an index of all the contest problems on
the web, but if not, send an email to the autojudge with
EMPTY BODY and

 Subject: get help/problems

to get the index.

Asking Questions:

You may think that a problem description is ambiguous,
and ask the judges for clarification, though you should
be careful to think the situation through thoroughly
first. To ask such a question, just send ordinary mail
to the autojudge, taking care that it’s subject does not
begin with ‘submit’ or ‘get’. A human judge will be
notified and eventually respond.

If you ask for a clarification by e-mail, and a signifi-
cant answer is given, that answer may be given by post-
ing it on the scoreboard so everyone can see it. You
may not receive email back in this case.

Working on a Problem

For a problem named ‘pppp’ you should create a directory
in which to work on the problem and write a file named
‘pppp.c’, ‘pppp.cc’, ‘pppp.java’, or ‘pppp.lsp’ in that
directory. The suffix of the file you write determines
the programming language you are using:

 .c for C
 .cc for C++
 .java for JAVA
 .lsp for COMMONLISP

Your program should be written to take input from the
terminal and put output to the terminal. In C this
means using functions such as ‘gets’, ‘scanf’, and
‘printf’ that implicitly use ‘stdin’ for input and
‘stdout’ for output. In C++ this means using ‘cin’ and
‘cout’. In JAVA this means using ‘System.in’ and
‘System.out’. In COMMONLISP this means using
‘*standard-input*’ and ‘*standard-output*’.

You should NOT, repeat NOT, write output to the standard
error output, ‘stderr’, ‘cerr’, ‘System.err’, or
‘*standard-error*’. Such output will result in a
‘Program Crashed’ score.

You should NOT under any circumstances open a file in
your code. In the judge’s program execution environ-
ment, output operations on opened files fail, in order
to protect the judge’s software from wayward submis-
sions. Since you will likely not be checking for output
failures in your code, your code will mysteriously pro-
duce no output in the judge’s environment if you open an
output file, and will be scored ‘Program Crashed’.

When the autojudge executes your program, it will be
called with NO program arguments. You can use this fact
to write out debugging information to the standard out-
put IF your program is called with one or more program
arguments.

To submit your program code, you send a message to the
autojudge with a subject of the form

 Subject: submit pppp.c

and plain text body containing nothing but a copy of the
file ‘pppp.c’, if you solved the program in the C pro-
gramming language. If you chose a different language,
replace the file name by the appropriate one chosen
from ‘pppp.cc’, ‘pppp.java’, or ‘pppp.lsp’.

email_solving 09/28/06 19:14:22 3 of 4

Send this message as PLAIN TEXT, and NOT HTML.

INSERT the file into the body, and DO NOT ATTACH the
file. The file must be the ONLY thing in the message
body.

You can test all this with the file demos/count/count1.c
by sending a message with

 Subject: submit count.c

and with the file inserted in the body of the message.
Note the ‘Subject’ has ‘count.c’ and NOT ‘count1.c’.

Submission Alternatives
---------- ------------

In some contests, particularly those with ‘feedback’
scoring, there are alternative ways of submitting a
problem that require a ‘qualifier’ to be added to the
end of the subject. The possible qualifiers are:

 in Returns score, and when practical,
 returns the judge’s input for the first
 failed test case.

 inout Ditto but returns both judge’s input and
 judge’s output for the first failed test
 case.

 solution Returns score, and if the score is
 ‘Completely Correct’, also returns the
 judge’s solution to the problem.

Thus if your solution is ‘pppp.c’, and your qualifier is
‘inout’, your subject is

 Subject: submit pppp.c inout

The scoreboard in a ‘feedback scored’ contest is not
based on time, but is instead based on the submission
qualifiers you used when your solution was still incor-
rect. A submission without qualifiers, that gets no
feedback from the judge’s test cases, has the least
penalty. The ‘in’ qualifier has the second least penal-
ty; and the ‘inout’ qualifier has the greatest penalty.
There is no penalty for a correct submission, and the
‘solution’ qualifier behaves like a missing qualifier
for an incorrect submission.

If you have already submitted a correct solution, you
can resubmit with a ‘solution’ qualifier to get the
judge’s solution, without any affect on your score.

Timed contests and some other contests disallow most
submission qualifiers, in which case the submissions
with disallowed qualifiers behave as if they had no
qualifier (except they also return a note saying the
qualifier was disallowed).

Resource Limits
-------- ------

In addition to a description, there should be a
‘Makefile’ for each problem. This contains memory and
time resource limits which constrain the problem.
Memory limits are typically several megabytes and time
limits are typically 10 to 60 seconds. Harder problems
require care to be sure you stay within these limits.

Most problems are such that solutions in C or C++ will
run in a few seconds. If you have long running times,
you may have chosen an algorithm too inefficient to
avoid the time limit.

email_solving 09/28/06 19:14:22 4 of 4

Debugging

The best way to debug is to include code that prints
extra debugging information to the standard output if
your program is passed any arguments. For C, such
code might look like:

int debug;
#define dprintf if (debug) printf

int main (int argc)
{
 debug = (argc > 1); // # arguments = argc-1.
 . . .
 dprintf (...);
}

See the C++, java, and commonlisp help files for debug-
ging in other languages.

Judge’s invocations of your program will not have ANY
program arguments.

For program crashes and infinite loops, it is quickest
to use a debugger, if you have minimal familiarity with
one of the available debuggers. A typical usage is

 gdb pppp
 run < pppp.in
 ... program crashes, or control-C is pressed ...
 ... to get out of an infinite loop ...
 back [this lists frames]
 frame # [# is number of correct frame]
 list [lists code near crash]
 p EXP [print value of expression EXP]

Other Issues
----- ------

The following help files may be useful for:

 Understanding problem scores: scores

 Understanding the scoreboard: scoreboard

File: email_solving
Author: Bob Walton <walton@deas.harvard.edu>
Date: See top of file.

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2006/09/28 23:14:22 $
 $RCSfile: email_solving,v $
 $Revision: 1.5 $

input 04/25/06 00:17:59 1 of 1
Input Help Tue Apr 25 00:15:36 EDT 2006

Input comes from the standard input. This is ‘stdin’ in
C, ‘cin’ in C++, ‘System.in’ in JAVA, and ‘*standard-
input*’ in COMMONLISP. These input streams do NOT have
to be opened; you should NOT open any files.

You may assume that input is correctly formatted, except
for the rare problem where you are told to produce
special output if the input contains a formatting error.
Do not waste time checking for input errors when you do
not have to.

In some problems newlines are NOT syntactically signifi-
cant, and newlines are just like any other space charac-
ter on input.

If you are writing in C you may need the ungetc func-
tion and the gets function.

If you are writing in C++ you may need cin.peek() and
cin.getline(buffer, sizeof buffer).

If you are writing in JAVA you may need either the
StreamTokenizer or StringTokenizer classes. See the
code in demos/count/count1.java and demos/javaio/
javaio.java.

If you are writing in COMMONLISP, you may need calls
like
 (read-line t nil ’eof)
 (read-char t nil ’eof)
 (peek-char nil t nil ’eof)

File: input
Author: Bob Walton <walton@deas.harvard.edu>
Date: See top of file.

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: hc3 $
 $Date: 2006/04/25 04:17:59 $
 $RCSfile: input,v $
 $Revision: 1.11 $

output 04/25/06 00:17:59 1 of 1
Output Help Tue Apr 25 00:15:45 EDT 2006

Output is written to the standard output. This is
‘stdout’ in C, ‘cout’ in C++, ‘System.out’ in JAVA, and
‘*standard-output*’ in COMMONLISP. These output streams
do NOT have to be opened; you should NOT open any files.

In general, to be correct your program must produce
EXACTLY the one and only correct sequence of output
characters.

The only whitespace characters you should use are new-
line and the single space ’ ’, unless the problem de-
scription contains explicit instructions to use hori-
zontal tabs.

You should never use two single spaces in a row unless
explicitly instructed to do so. Usually the only time
you use two spaces in a row is when you are asked to
line things up in columns.

You should never put space characters at the beginning
or ending of lines unless explicitly instructed to do so
(which is never, except for beginning spaces to line
something up in a column).

You must use the correct upper or lower case.

The judging is done by comparing your program’s output
to a judge’s solution’s output on specially prepared
judge’s input. The comparison checks for differences
in column position of non-numeric non-blank characters
and the ends of numbers, and checks the differences
of numbers. The comparison is likely to require an
EXACT match for output that does not include floating
point numbers, and an EXACT match except for numbers
when floating point numbers are included. BEWARE.

To format floating point numbers within a fixed number
of columns, you should use formats like %10.6f in C
and ˜10,6F in COMMONLISP. See the help file on C++ for
information on how to output floating point numbers in
C++, and the help file on JAVA for information about
how to output floating point numbers in JAVA.

If you are asked to output floating point numbers but
are NOT given the number of columns in which to place
the number, you may assume that the number of columns
occupied by the number is unimportant. This is because
numbers that are only slightly different may take dif-
ferent numbers of columns: e.g., 10.000 and 9.999 where
the accuracy is supposed to be 0.001 and the true value
might be close to 9.9995.

Numbers that are output should NEVER have commas in
them, unless the problem specifically states otherwise.

In order to get sufficient precision, floating point
computations should be done in double precision, and
constants like PI should have double precision accuracy.

File: output
Author: Bob Walton <walton@deas.harvard.edu>
Date: See top of file.

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: hc3 $
 $Date: 2006/04/25 04:17:59 $
 $RCSfile: output,v $
 $Revision: 1.9 $

print 04/25/06 01:18:35 1 of 2
Print Help Tue Apr 25 01:08:22 EDT 2006

In a fully formal contest the contest staff will bring
your printouts to you, and you are NOT permitted to
fetch them from the printer yourself. The ‘printer’
command below may tell you something about the status of
your printout.

In a formal contest run for practice purposes, you may
be asked to get your own printouts. The ‘printer’
command will tell you which printer printed them.

In other contests in which you are given an account into
which you log from your own personal computer, you have
to define your printer yourself in the ˜/PRINTER file of
your account: see below for details.

Printer Commands:

 print filename ...

 Prints files with 80 column width.

 print2 filename ...

 Prints files with 80 column width using a more
 compact two pages per page format and very
 small font.

 fprint filename ...

 Ditto but assumes 56 column width and uses a
 normal sized font. All our documentation and
 sample code is written with a 56 column width
 (and where appropriate, a 40 line per page
 length).

 printer

 Shows the printer status.

Printer Definition Using The ˜/PRINTER File
------- ---------- ----- --- --------- ----

If you are given a contest account into which you log
from your own personal computer, you have to define your
printer by putting its name in the ˜/PRINTER file in
your contest account. The name of the printer can be
an email address, in which case postscript files will be
emailed to that address, instead of being sent to a
normal printer.

If ˜/PRINTER contains an email address, postscript files
will be the bodies of the messages mailed. But if
˜/PRINTER contains an email address preceded by an
initial ‘@’ (so ˜/PRINTER has a line with two ‘@’s) then
the postscript files will be attachments in the messages
mailed.

If postscript files are being emailed in message bodies
to an address like ‘fee<fi@fo>’ on a system that uses
‘procmail’ (e.g., Linux), one typically puts the follow-
ing entry in the ‘.procmailrc’ file of the ‘fi@fo’
account:

 :0 b
 * ^To:[]+fee<fi
 | lpr -Plp

This pipes the body of any email received with a ‘To’
address of ‘fee<fi...’ to ‘lpr -Plp’. Here the []’s
contain a space followed by a tab.

print 04/25/06 01:18:35 2 of 2

If you are working in the same building as a printer
known to the computer on which your contest account
runs, and you want to use that printer, you can just put
its name in ˜/PRINTER. This name must not have any
‘@’s.

File: print
Author: Bob Walton <walton@deas.harvard.edu>
Date: See top of file.

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: hc3 $
 $Date: 2006/04/25 05:18:35 $
 $RCSfile: print,v $
 $Revision: 1.7 $

commonlisp 09/28/06 19:24:23 1 of 2
Commonlisp Help Thu Sep 28 19:21:57 EDT 2006

Commonlisp

There is no reasonably standard COMMONLISP, so HPCM
hides the exact commonlisp it is using inside the
hpcm_clisp program. The standard way of running a
COMMONLISP solution interpretively is

 hpcm_clisp -I pppp.lsp

This loads pppp.lsp into the interpreter and issues the
‘(main)’ call. The programmer should write a ‘(defun
main ...)’ for a function that reads ‘*standard-input*’
and writes ‘*standard-output*’. The output of this
command is just what the ‘main’ function writes to the
standard output, and nothing more.

The pppp.lsp file can be compiled via the command

 hpcm_clisp -c pppp.lsp

and the compiled code can then be executed by

 hpcm_clisp -I pppp.fas

Program Structure
------- ---------

The following can be used as the structure of a pppp.lsp
file:

 (defvar debug)
 (defun dformat (&rest r)
 (if debug (apply #’format t r)))

 (defun main (&rest r)
 (setq debug r)

 (loop
 (let ((line (read-line t nil ’eof)))
 (if (eq line ’eof) (return))

 (dformat "..." . . .)

 . . .))

 (format t "..." . . .))

If the program is called with one or more arguments, the
‘debug’ defvar is set non-nil, and ‘(dformat ...)’ will
do nothing. The program can be called with arguments
by executing

 hpcm_clisp -I pppp.fas argument ...

The ‘(read-line t nil ’eof)’ expression will read a line
and return it, but return the symbol eof if an end of
file is encountered instead of a line.

commonlisp 09/28/06 19:24:23 2 of 2

File: commonlisp
Author: Bob Walton <walton@deas.harvard.edu>
Date: See top of file.

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2006/09/28 23:24:23 $
 $RCSfile: commonlisp,v $
 $Revision: 1.5 $

scores 12/23/06 02:03:53 1 of 4
Scores Help Sat Dec 23 01:59:54 EST 2006

Here we describe the scores of individual problems. See
the ‘scoreboard’ help file for a description of how
these individual scores are put together into a total
score for each team or individual contestant.

Results Come by Email:

You will get your results back by e-mail. Correct
results will also be posted on the scoreboard (see
below).

Whatever you submit using ‘make submit’ will be Cc’ed to
your account. If you are using a personal account not
provided by the contest, you may not be using ‘make
submit’, but may be simply sending email yourself to the
autojudge, in which case it is your responsibility to Cc
the mail to yourself if you wish.

Asking Questions:

You may e-mail questions to the judges but the method
to do this from a contest provided account is a little
weird. First, edit your email into a file of your own
choosing. If your first line has the form

 Subject:

and the next line is completely empty (no spaces),
then the first line will be the subject line of the
message. Then

 hpcm_sendmail < filename

to send the file as email to the judges.

Note that the subject must NOT begin with the words
‘submit’ or ‘get’.

If you are using your own personal account not provided
by the contest, just send ordinary mail to the auto-
judge, taking care that it’s subject does not begin with
‘submit’ or ‘get’. A human judge will be notified and
eventually respond.

If you are using a personal account with the UNIX tools
described in the ‘email_unix_tools’ help file, you can
also use hpcm_sendmail if you choose.

If you ask for a clarification by e-mail, and a signifi-
cant answer is given, that answer will be given by post-
ing it on the scoreboard so everyone can see it. You
will not receive email back in this case.

What Scores are Possible
---- ------ --- --------

The possible scores for a particular submission are:

 Completely Correct
 Formatting Error
 Incomplete Output
 Cpu Time Limit Exceeded
 Output Size Limit Exceeded
 Program Crashed
 Incorrect Output

scores 12/23/06 02:03:53 2 of 4

The first score, ‘Completely Correct’, means the sub-
mission is correct. ALL the other scores mean the sub-
mission is incorrect. Sometimes the word ‘accepted’ is
used instead of ‘correct’ and the word ‘rejected’ is
used instead of ‘incorrect’. With this terminology, the
score ‘Completely Correct’ means the submission was
accepted, and ALL the other scores listed above mean the
submission was rejected.

What Do the Scores Mean
---- -- --- ------ ----

Scoring is done by running the judge’s input through
your program to produce ‘your output’, which is compared
with the ‘judge’s output’, that is produced by running
the judge’s solution on the same input. With this in
mind, the precise meanings of the possible submission
scores are as follows:

Completely Correct
 Your output was essentially the same as the judge’s
 output. For some problems, ‘essentially the same’
 means exactly the same, character by character. For
 problems with floating point numeric output, numbers
 may not differ by more than a tolerance specified in
 the problem description.

 If the number of columns occupied by numbers and
 other output is specified by the problem descrip-
 tion, then numbers are required to end in the cor-
 rect column, even when they differ. If the number
 of decimal places in output numbers is specified,
 your numbers and the judge’s numbers must have the
 same number of decimal places. If the presence or
 absence of exponents in output numbers is specified,
 your numbers must agree with the judge’s numbers on
 having or not having an exponent. The absence of
 an exponent is implicit if an absolute number toler-
 ance is specified, such as 0.001; but specification
 of a relative number tolerance, such as 0.01%,
 implies that exponents are optional.

 If white spaces in the output are specified by the
 problem description, no extra spaces are allowed and
 no required spaces may be missing. Most problem
 descriptions specify the number of lines to be out-
 put, in which case no extra blank lines may be
 output and no required blank or empty lines may be
 missing.

 ‘Completely Correct’ is the ONLY score that means
 your solution was accepted by the judges, and you
 have solved the problem. All other scores mean your
 solution has been rejected by the judges.

Formatting Error
 Your output has the right words and the right num-
 bers (within any designated tolerance) in the right
 order, but there are unallowed differences in white-
 space, columnization, letter case, number of decimal
 places in numbers, or presence or absence of expo-
 nents in numbers. These differences can be as
 little as one extra blank line in your output!

scores 12/23/06 02:03:53 3 of 4

 Although omitting a blank line is usually a Format-
 ting Error, if the line is used to separate test
 cases, omitting it may be an ‘Incorrect Output’
 error.

 For problems in which only the numbers really mat-
 ter, omitted, extra, or misspelled words may be
 considered to be just formatting errors. However,
 even in this case words like ‘Case’ and ‘Data Set’
 that announce the beginning of a new test case in
 the output are considered to really matter, and
 if incorrect, will cause an ‘Incorrect Output’ score
 and not a ‘Formatting Error’ score.

Incomplete Output
 Your output is not empty, and is either completely
 correct or has only formatting errors, but your out-
 put stops prematurely.

Cpu Time Limit Exceeded
 The program was terminated by the system because
 it exceeded the CPU time limit imposed by the
 problem Makefile.

 If you open files instead of using the standard in-
 put and output you may get a Cpu Time Limit Exceeded
 score: see Common Mistakes in the solving help file.

Output Size Limit Exceeded
 The program was terminated by the system because
 it exceeded the amount of output allowed by the
 problem Makefile.

Program Crashed
 Your program did not produce any output, or your
 program sent output to the standard error stream,
 or your program terminated abnormally; but your
 program did not exceed either CPU time or output
 size limits. Exceeding memory limits will cause
 this score, because it is unfortunately difficult
 to distinguish memory limit exceedments from other
 kinds of program crashes (e.g., using unallocated
 memory).

 If you open files instead of using the standard in-
 put and output you may get a Program Crashed score:
 see Common Mistakes in the solving help file.

Incorrect Output
 The program did not crash or terminate prematurely,
 and some word or number in your output does not
 match the corresponding word or number in the
 judge’s output, even when letter case and whitespace
 are ignored and number differences within any toler-
 ance stated in the problem description are ignored.

 Omitting a blank line that is used to separate test
 cases may be an ‘Incorrect Output’ error instead of
 a ‘Formatting Error’. In general, failure to output
 correctly lines that begin or separate test cases
 may be an ‘Incorrect Output’ error, instead of a
 ‘Formatting Error’.

The autojudge is generally very good at giving the
right score, with the exception of certain cases where
the autojudge scores ‘Incorrect Output’ but a human
judge would score ‘Formatting Error’. Misspelled,
omitted, out-of-order, or extra words may be such cases.

scores 12/23/06 02:03:53 4 of 4

Although a human judge who is manually reviewing scores
could change the score in such a case, she does not for
most contests, because the extra effort to do so is not
worth the minimal benefit to the contestants, who should
find it fairly easy to catch such errors, and should not
need the extra hint involved in changing the score.

File: scores
Author: Bob Walton <walton@deas.harvard.edu>
Date: See top of file.

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2006/12/23 07:03:53 $
 $RCSfile: scores,v $
 $Revision: 1.16 $

scoreboard 09/28/06 19:31:48 1 of 5
Scoreboard Help Thu Sep 28 19:29:21 EDT 2006

The scores of individual problems are described in the
‘scores’ help file. This file describes how individual
problem scores are put together into a scoreboard.

The Scoreboard

If you do not have a contest account provided by the
contest judges, you will typically have been given a web
URL at which a one page contest scoreboard is displayed.

But in a contest account provided by the contest judges
the scoreboard is best displayed by allocating a
separate window to show the scoreboard and in that
window running the command:

 scoreboard

 This command will show the contest scoreboard
 refreshing every 30 seconds. The command is
 best executed in its own window. To terminate
 type control-C.

 The scoreboard may have several pages, and in
 such a case this command cycles through all the
 pages, going to the next page every 30 seconds.

 scoreboard N

 This command just displays the N’th scoreboard
 page, refreshing every 30 seconds.

 scoreboard CONTEST-NAME
 scoreboard CONTEST-NAME N

 Sometimes one account can be used to enter many
 different contests. In this case you have to
 identify which contest you want to see the
 scoreboard of. Usually the ‘scoreboard’ command
 by itself will list all the possible contests.

The part of a scoreboard that shows team scores may be
frozen during the last hour of a formal contest. This
means the scoreboard only shows results as of the time
when it was frozen, which is one hour before the contest
ends. This is done to create suspense, so people will
come to the post-contest meeting at which the final con-
test results will be announced.

Ranking Submitters
------- ----------

The scoreboard gives for each problem and submitter in-
formation about the submissions made by the submitter
for the problem. For each submitter the scoreboard
typically gives the total number of problems correctly
solved by the submitter, and a ranking score that ranks
submitters who have the same number of solved problems.

A submitter (contest account) may be a team or an in-
dividual, depending on the type of contest. Here we use
‘submitter’ to mean either ‘a team’ or ‘an individual’.

Some contests are completely unscored. For these the
submitters are listed in alphabetical order, and for
each problem and submitter an indication is given of
whether the submitter has solved the problem, and if
so, the date the problem was solved.

scoreboard 09/28/06 19:31:48 2 of 5

On the other hand, if the contest is being scored, sub-
mitters with more correctly solved problems appear
earlier in the scoreboard.

When a contest is being scored, there may be a way of
ranking submitters who have the same number of solved
problems. If there is no ranking for a scored contest,
submitters are listed by alphabetical order within the
group of submitters all of which have the same number of
solved problems.

There are two different methods of ranking that can be
used. The classical way, used in all limited duration
contests, is to measure the time required to solved each
problem. This is called ‘timed’ ranking. The other
way, usable in untimed contests, is to use the kinds of
feedback provided for incorrect submissions. Depending
upon the submission type, either the judge’s input or
both the judge’s input and output for the first failed
test case can be provided for a submission. This is
called ‘feedback’ ranking.

For either kind of ranking, each solution is assigned a
numerical score, these scores are either added or aver-
aged to produce a score for each submitter, and problems
a submitter never solves do not count in any way toward
scoring or ranking submitters.

Below we discuss in separate sections timed, feedback,
and unranked contests, so you may read just the appro-
priate section. However the following is common to
all kinds of contest.

A scoreboard has an entry for each submitter and each
problem.

If there are no submissions for a problem by a submit-
ter, ‘......’ appears in the scoreboard for the submit-
ter and problem. This also appears if there are no
correct submissions and incorrect submissions are NOT
being reported. But if incorrect submissions are being
reported and there are some for a problem not yet cor-
rectly submitted by a submitter, then ‘..../N’ appears,
where N is the number of incorrect submissions by the
submitter for the problem.

For each submitter in a ranked contest the number of
solutions N and ranking score RRR of submitter are
reported in the format ‘N/RRR’. For timed contests
higher RRR is worse, but for feedback contests higher
RRR is better. For scored but unranked contests, only
N is reported, and there is no ‘/RRR’.

In some contests, problems are scored first by an auto-
judge, and then if they are not completely correct, the
score is reviewed by a human judge. If you see a ‘*’
prefixed or suffixed to any item of scoreboard informa-
tion, this means that one or more submissions used to
compute the item have been scored incorrect by the auto-
judge, but are still awaiting review by the human judge.

Formal Timed Contests
------ ----- --------

A formal contest is a contest of limited duration in
which the problem descriptions are passed out at the
start of the contest. Each solved problem is given a
score that is the difference between the time the
correct solution was submitted and the start time of
the contest.

scoreboard 09/28/06 19:31:48 3 of 5

In a formal contest a submitter’s ranking score is the
sum (NOT the average) of all the solution scores for
the solutions submitted by the submitter. Lower time
scores are better, higher time scores are worse. Also,
if you think of problems as being solved consecutively,
and a submitter solves, say, three problems, the first
in time T1, the second in time T2, and the third in time
T3, then the submitter’s ranking score is 3*T1 + 2*T2 +
T3, so it pays to solve the easiest problems first.

Solution times are computed in seconds. Some contests
apply a penalty of typically 20 minutes (1200 seconds)
for each incorrect submission of a problem made before
the first correct submission of the problem.

Solution times may be represented on the scoreboard as
‘M:SSsN’, with decimal numbers M, SS, and N, meaning
that the solution time is M minutes and SS seconds, and
there were N submissions, including N-1 incorrect sub-
missions, before the first correct submission. The ‘s’
means the time SS is in seconds. N may be omitted if
incorrect submissions are not being reported on the
scoreboard.

‘H:MMmN’ instead means the time is H hours and MM min-
utes, rounded down to the nearest minute. ‘D:HHhN’
instead means the time is D days and HH hours, rounded
down to the nearest hour. ‘DdN’ means the time is D
days, rounded down to the nearest day. The choice of
time unit, s, m, h, or d, is made to give the elapsed
time to the greatest accuracy within 6 display charac-
ters, including the unit character. However the actual
solution time used for computing a submitter’s ranking
score as described above is always in seconds.

Informal Timed Contests
-------- ----- --------

Informal contests derive timed scores without having a
single contest start time or giving out paper problem
descriptions. In an informal contest a submitter gets a
problem named pppp by executing

 hpcm_get problems/pppp

This obtains a description of the problem as a file in
the submitter’s problems/pppp directory.

In general, the problem score for a timed contest for a
submitter is the difference between the time the submit-
ter submits a correct solution and the start time of the
problem. There are two ways of scoring informal con-
tests, depending on how problem start times are assign-
ed.

If the problem start times for a particular submitter
are ALL the first time the submitter gets ANY problem in
the contest, this time acts as the start time of the
contest for the particular submitter, and the ranking
score is the same as that of the formal contest above.
In this case, an informal contest is just like a formal
contest except each submitter (each team) can start at a
different time.

If a start time for a particular problem and submitter
is the time the submitter hpcm_get’s the problem, the
ranking score is the AVERAGE of the problem scores,
which is just the average time to solve any problem the
submitter has solved. Again lower scores are better,
higher scores are worse. In contests of this kind there
is often a maximum problem score, i.e. a maximum problem
solution time, so that any problem whose solution takes
longer than this maximum is counted as if it took just
this maximum amount of time to solve.

scoreboard 09/28/06 19:31:48 4 of 5

Feedback Contests
-------- --------

When a scored contest is not of limited duration and
problems are not being timed, three different kinds of
submission may be allowed, and different penalties are
assigned for each kind of submission when that submis-
sion is incorrect.

The methods for making different kinds of submissions
are as follows:

 Contest Provided Personal Account;
 Account Command: Send email with:

 make submit Subject: submit ppp.ext
 make in-submit Subject: submit ppp.ext in
 make inout-submit Subject: submit ppp.ext inout
 make solution-submit Subject: submit ppp.ext solution

You use the ‘make’ commands in an account provided to
you by the contest managers, and you send email with the
given ‘Subject:’ fields from your own personal account
that is not provided by the contest. You can also use
the ‘make’ commands in a personal account if you use the
email UNIX tools: see the email_unix_tools help file.

In what follows we refer to the different types of sub-
mission as ‘submit’, ‘in-submit’, ‘inout-submit’, and
‘solution-submit’.

The penalties typically assigned for different submis-
sion types in feedback scoring are:

 submit 10%
 in-submit 20%
 inout-submit 30%

‘Submit’ returns just the submission score. ‘In-submit’
also returns the judge’s input for the first test case
that was incorrect, when this is practical. ‘Inout-
submit’ returns both judge’s input and judge’s output
for this test case.

The score for each solution starts at 100.00, and is
multiplied by 90% for each incorrect ‘submit’, 80% for
each incorrect ‘in-submit’, and 70% for each incorrect
‘inout-submit’. Thus each penalty is applied to the re-
maining score for a problem. Note that only incorrect
submissions before the first correct submission count.

A submitter’s ranking score is the average (NOT the sum)
of the solution scores for all problems solved by the
submitter.

‘Solution-submit’ does not affect scoring. It returns
the judge’s solution if the score is ‘Completely
Correct’. After receiving a ‘Completely Correct’ score
for some other type of submission, you may resubmit
using ‘solution-submit’ to get the judge’s solution
without affecting your problem score.

If incorrect submissions are being reported, then for
each solution the solution score and the number of
incorrect submissions are both reported using the format
‘IIiOOoXX:SS’. Here the upper case letter pairs denote
numbers and the lower case letters ‘i’ and ‘o’ appear
literally on the scoreboard. II is the number of
in-submit’ incorrect submissions, OO the number of
‘inout-submit’ incorrect submissions, XX the number of
‘submit’ incorrect submissions, and SS is the solution
score rounded to the nearest integer. If there are no
incorrect submissions, just ‘100’ is reported instead.

If incorrect submissions are NOT are being reported,
then only SS is reported.

scoreboard 09/28/06 19:31:48 5 of 5

Although SS is rounded to the nearest integer, in compu-
ting the ranking score of a submitter, the solution
score to many decimal places is used.

Unranked Contests
-------- --------

If a contest is unranked, there are no ranking scores,
and the entry for a problem solution is just the date of
the solution, followed by ‘/N’ if N is the total number
of submissions up to and including the first correct
submission, provided that incorrect submissions are
being reported.

The scoreboard for an unranked contest may or may not
report the number of correct submissions each submitter
has. If it does, the submitters are sorted first by
their numbers of correct submissions, and then alphabe-
tically by submitter name, and the scoring is called
‘unranked scoring’. Otherwise submitters are all just
sorted alphabetically, without reporting the number of
correct submissions for each submitter, and the contest
is said to be ‘unscored’.

File: scoreboard
Author: Bob Walton <walton@deas.harvard.edu>
Date: See top of file.

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2006/09/28 23:31:48 $
 $RCSfile: scoreboard,v $
 $Revision: 1.19 $

c++ 09/09/08 08:31:49 1 of 6
C++ Help Tue Sep 9 08:34:05 EDT 2008

Include Files
------- -----

The following are typical includes in modern C++:

 #include <iostream>
 #include <iomanip>
 #include <cmath>
 #include <cstring>
 #include <cctype>
 #include <cassert>

 using namespace std;

It is common to have a conflict with some name defined
in the includes. E.g., you may have trouble naming a
global variable ‘time’. To fix this, change the name
of your variable. A simple way of doing this is to put
the following right after the includes:

 #define time Time

If you want your code to last as include files change,
replace the using statement above with statements such
as the following:

 using std::cin;
 using std::cout;
 using std::endl;

Program Structure and Debugging
------- --------- --- ---------

Typical program structure including end of file detect-
ion and debugging is:

 #include ...
 . . .

 bool debug;
 #define dout if (debug) cout

 int main (int argc)
 {
 // argc-1 == number of program arguments.
 debug = (argc > 1);

 while (true)
 {

 cin >> x >> y >> z;
 if (cin.eof()) break;

 dout << . . .

 }
 }

After reading with ‘cin >> ...’, cin.eof() is true
if and only if an end of file has occurred on cin.
No other error indication is given. Note that
‘cin.eof()’ is normally false after successfully
reading some value, as the input is still before
the end of the line containing the value.

c++ 09/09/08 08:31:49 2 of 6

Many problems require you to detect certain input
values as end of data markers, instead of looking for
eof. E.g., the problem might specify that x, y, and z
are all 0 to indicate end of data, in which case you
replace the above ‘if’ statement by

 if (x == 0 && y == 0 && z == 0) break;

Above ‘dout’ behaves just like ‘cout’ except no output
is produced unless your program is called with an
argument. One must be careful, however, to remember
that ‘dout’ contains an ‘if’ statement and cannot be
followed directly by an ‘else if’; i.e., the following
will NOT work:

 if (...) dout << ...;
 else if ...

Put {} brackets around ‘dout << ...;’ in this situation.

Debugging is best done with information printed by
‘dout’, and not with a debugger like ‘gdb’. The excep-
tion is debugging programs that crash or go into an
infinite loop, which is best done with a debugger.

It is also a good idea to use ‘assert’ statements
to check that assumptions you have made are valid during
actual program execution.

Numeric Constants
------- ---------

The following code imports useful constants, which are
the minimum and maximum values of various number types,
and the values of PI and E.

 INCLUDE IMPORTS

 #include <climits> int INT_MAX;
 int INT_MIN;
 long LONG_MAX;
 long LONG_MIN;
 unsigned long ULONG_MIN;

 #include <cfloat> double DBL_MAX;
 double DBL_MIN;
 float FLT_MAX;
 float FLT_MIN;

 #include <cmath> double M_PI;
 double M_E;

Fixed Width Output

The following is useful for producing fixed width format
numbers.

To output a right adjusted integer I in N columns use:

 cout << setw (N) << I;

Setw sets the width of the next output; but each output
resets this to 0 so you must reset the width just before
outputting each N column number. The width of 0 means
‘use as many columns as necessary’.

c++ 09/09/08 08:31:49 3 of 6

To output a right adjusted floating point number F in N
columns with P decimal places use:

 cout << setiosflags (ios::showpoint | ios::fixed);
 cout << setprecision (P);
 cout << setw (N) << F;

The precision P and flags do not get reset after the
number is output. They can be reset to defaults by

 cout << resetiosflags (ios::showpoint | ios::fixed);
 cout << setprecision (6);

Sometimes you are asked to use ‘0’ as a high order fill
character, instead of ‘ ’, or to output in hexadecimal
or octal instead of decimal. This can be done with

 cout << setfill (’0’); // Set fill character.
 cout << setfill (’ ’); // Reset fill character.
 cout << hex; // Set base to 16.
 cout << dec; // Set base to 10.
 cout << oct; // Set base to 8.

To use setw etc. you need to:

 #include <iomanip.h>

You may also need

 using std::setw;
 using std::hex;
 using std::dec;
 using std::setprecision;
 using std::ios;

etc. However, somewhat counter intuitively

 using std::setiosflags;
 using std::resetiosflags;

are not needed.

To left adjust use

 cout << setw (my_width)
 << setiosflags (ios::left)
 << my_string
 << resetiosflags (ios::left)
 ...

Character Input
--------- -----

You can use the following for character input:

 int c = cin.get(); // Get next character.
 int c = cin.peek(); // Return next character
 // without skipping over it.

These return EOF for end of file.

Inputting Lines
--------- -----

To input a line use the getline function, as in

 char buffer [SOME_SIZE];
 cin.getline (buffer, sizeof (buffer));

c++ 09/09/08 08:31:49 4 of 6

The new line at the end of the line is NOT stored in the
buffer; a NUL character is stored at the end of the line
in the buffer. Do NOT try to use the ‘get’ function in
place of ‘getline’: its behavior is similar but it does
NOT skip over the new line in the input stream, and
therefore after reading the first line it reads empty
lines forever.

If you use non-line-oriented code to input a value V,
you CANNOT then use ‘getline’ to get a following line,
unless you first skip by the end of line after V.
Failing to do this causes ‘getline’ to read an empty
line, consisting of just the line feed after V. Typical
correct code is:

 int x;
 cin >> x; // Does not skip line end.
 while (cin.get() != ’\n’);
 cin.getline (...);

Parsing Lines
------- -----

You can parse a line after it is input by code such as

 #include <sstream>
 using std::istringstream;

 istringstream in (buffer);

Now ‘in’ is an input stream whose input is taken from
the buffer (actually, the input is copied from the
buffer into another buffer internal to the instring-
stream when the latter is created).

Here in.eof() will be true at the end of the string.
This is likely to be a problem because immediately after
reading a number at the end of the buffer in.eof() will
be true. To compensate, check for eof BEFORE reading
each value by first executing ‘in >> ws’ to skip past
whitespace, then testing in.eof(), and only then reading
the value. Typical code is:

 in >> ws;
 if (in.eof()) break;
 in >> x;

Writing Strings
------- -------

Strings can be written using:

 #include <sstream>
 using std::ostringstream;

 ostringstream out;
 . . . out << . . .
 out << ends;
 const char * s = out.str().data();
 cout << s;

Here ‘out’ is an output stream whose output is written
into an INTERNAL buffer (you CANNOT make a stream that
writes into your buffer). You can get the starting
address of a string that contains the contents of the
internal buffer with ‘out.str().data()’. Before doing
this, use ‘out << ends’ to write a NUL into the buffer.

You can also use ‘cout << out.str()’ to write the
internal buffer to ‘cout’ directly, but do NOT use
‘out << ends’ in this case, as the NUL will be written
to ‘cout’ if you do.

c++ 09/09/08 08:31:49 5 of 6

Writing Your Own << And >> Operators
------- ---- --- -- --- -- ---------

It is often convenient to define your own << operator
to output something. Some examples are:

 using std::ostream;
 ostream & operator <<
 (ostream & out, mytype & value)
 {
 . . .
 out << . . .
 . . .
 return out;
 }

Suppose you want to output integers in a distinctive
format. A simple way is

 struct myformat {
 int value;
 myformat (int value) : value (value) {}
 };
 ostream & operator <<
 (ostream & out, myformat s)
 {
 out << (... s.value ...);
 . . .
 return out;
 }
 . . .
 cout << myformat (99);

Here we have invented a typed structure to encapsulate
the value when it is to be printed. Note the argument
to << may NOT be ‘myformat & s’ because here s is not
constant, and in use the ‘myformat’ value is a temporary
and temporaries are read-only.

Input operators can be define by:

 using std::istream;
 istream & operator >>
 (istream & in, mytype & value)
 {
 . . .
 in >> . . .
 . . .
 return in;
 }

STL API Documentation
--- --- ------------

Standard Template Library (STL) API documentation is
usually available on-line during a formal contest. The
command to access it is:

 stlhelp

In a formal contest, you should NOT use other means to
access such documentation, as using the internet is a
violation of formal contest rules.

c++ 09/09/08 08:31:49 6 of 6

File: c++
Author: Bob Walton <walton@deas.harvard.edu>
Date: See top of file.

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2008/09/09 12:31:49 $
 $RCSfile: c++,v $
 $Revision: 1.14 $

java 09/28/06 19:37:30 1 of 3
JAVA Help Thu Sep 28 19:35:45 EDT 2006

API Documentation
--- ------------

JAVA API documentation is usually available on-line
during a formal contest. The command to access it is:

 javahelp

In a formal contest, you should NOT use other means to
access such documentation, as using the internet is a
violation of formal contest rules.

Program Structure
------- ---------

The following is a suitable structure for a program that
solves the problem named PPPP:

 import java.io.*;
 import java.util.StringTokenizer;

 public class PPPP {

 public static boolean debug;

 public static void dprintln (String s)
 {
 if (debug) System.out.println (s);
 }

 public static void main (String[] args)
 throws IOException
 {

 debug = (args.length > 0);

 BufferedReader reader
 = new BufferedReader
 (new InputStreamReader
 (System.in));

 while (true)
 {

 String line = reader.readLine();
 if (line == null) break;

 StringTokenizer tokenizer
 = new StringTokenizer (line);
 . . .

 dprintln (. . .);

 System.out.println (. . .);
 }
 }
 }

java 09/28/06 19:37:30 2 of 3

Some parts of this structure are described below, and
examples are given in demos/count/count1.java and
demos/javaio/javaio.java.

Debugging

In the above program structure, debugging is turned on
if the program is called with any arguments (the main
function args is of non-zero length). In this case
the dprintln function prints, and in the opposite case,
where the program is called with no arguments, dprintln
does nothing.

Input

Line oriented input is best done with

 java.io.BufferedReader.readLine
 java.util.StringTokenizer.getToken

An example is in the count1.java demo. When using this
method, strings returned by getToken may have to be
converted to numbers. This can be done by code such as

 String s = ...;
 int i = Integer.parseInt (s);
 long l = Long.parseLong (s);
 double d = Double.parseDouble (s);

If line ends are to be treated just like space charac-
ters, using

 java.io.StreamTokenizer

is a good idea. An example is in the javaio.java demo.

Output

Output of floating point numbers with a specified number
of decimal places is done with

 java.text.DecimalFormat

See the javaio.java demo. It is important in some
contests to use a DecimalFormat object created with the
ENGLISH Locale.

Numbers that are output should NEVER have commas in
them, unless the problem specifically states otherwise.
This can be a problem if one uses NumberFormat.get_
instance and then fails to use applyPattern (see the
javaio.java demo).

String and free format number output examples merely use

 System.out.println

and are given in the count1.java an javaio.java demos.

Crashes

It is fairly common for JAVA programs which run well for
the contestant to crash when run by the judge. The
usual cause is judge’s input data that triggers an ex-
ception not observed with contestant input data.
Examples are when an out-of-range array index is used,
or the program one runs off the end of an input line
and calls getToken with no more tokens. The best debug-
ging strategy is to try to find input data that breaks
the program.

java 09/28/06 19:37:30 3 of 3

File: java
Author: Bob Walton <walton@deas.harvard.edu>
Date: See top of file.

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2006/09/28 23:37:30 $
 $RCSfile: java,v $
 $Revision: 1.7 $

advice 09/28/06 19:38:36 1 of 2
Help from Polonius Thu Sep 28 19:37:40 EDT 2006

Read the Demonstration Problems
---- --- ------------- --------

Every contest has rules for how to write your solution
programs; e.g., rules for submitting files, rules for
doing input and output, etc. The best way to BE SURE
you are following these rules is to read a demonstration
problem solution in the language you are using, and
mimic that solution when you do input/output, submit
your files, etc.

Input/Output Difficulties

A surprising number of solutions have simple bugs in
input or output. You need to master these with a bit
of practice. For example, be sure you can detect
the end of file and not go into an infinite loop when
it happens.

Completeness

Often solutions are correct except that their author
ignored one smallish instruction in the problem state-
ment. You need to test that your solution meets EVERY
stipulation in the problem statement. There is no
partial credit in a contest like this.

Be sure you can handle the formatting issues of a prob-
lem before you attempt it.

In a Formal Contest Do the Easiest Problems First

Take great care to do easiest problems first. Your
primary score is the number of completely correct prob-
lems you have done. Your secondary score, used in the
event of a primary score tie, is the sum of the number
of seconds you took for each problem, where the seconds
taken for a problem is computed by subtracting the start
time of the contest from the submit time of your first
correct solution of the problem. The secondary score is
lowest best (the primary score is highest best). In
effect, if you do N problems, the time you take on the
first problem counts N times, the time on the second N-1
times, etc. So you want the problems you solve first to
be the ones that take you the least amount of time. You
also want to do easiest problems first so you will solve
more problems, and your primary score will be higher.

Formal Contest Goals

You should try hard to complete half the problems.
Often completing a bit more than half the problems is
sufficient to be one of the several contest ‘winners’
(i.e. to go on to the next round).

Contestants who are completely new to this kind of all-
or-nothing problem scoring usually find it difficult to
get even one problem correct during a timed contest.
Such contestants should have as their goal to get just
one problem during the contest.

advice 09/28/06 19:38:36 2 of 2

File: advice
Author: Bob Walton <walton@deas.harvard.edu>
Date: See top of file.

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2006/09/28 23:38:36 $
 $RCSfile: advice,v $
 $Revision: 1.9 $

dynamic_programming 09/30/06 06:58:15 1 of 2
Dynamic Programming Sat Sep 30 06:59:20 EDT 2006
Problem Help

A dynamic programming algorithm is an algorithm with two
characteristics:

A. A problem P is parameterized in such a way that some
 parametric set of subproblems can be solved recur-
 sively. For example, the original problem P might
 be parameterized as P(i,m) for some integers 0 <= i
 < N, 0 <= m < N. And each problem P(i,m) for 0 < m
 might be solvable fairly quickly (say in time pro-
 portional to N) from the solutions to all the pro-
 blems P(i,m-1) for 0 <= i < N, while the problems
 P(i,0) are readily solvable.

 An example is the problem of finding the length of
 the shortest path from node 0 to node N-1 in an un-
 directed graph with nodes 0, 1, ..., N-1 and edges
 each of which have some length > 0. Then let P(i,m)
 be the problem of finding the length of the shortest
 path from node 0 to node i that has no more than m
 edges. Then we want to solve P(N-1,N-1), because
 any path with more than N-1 edges would have a cycle
 that could be removed to make the path shorter.

 Treat two nodes that are NOT connected as if they
 were connected by an edge whose length is infinity
 (or some number much larger than any possible short-
 est path). Then P(0,0) == 0 and P(i,0) = infinity
 for 0 < i < N. And for m > 0, P(i,m) is the minimum
 of P(k,m-1)+edge_length(k,i) for all nodes 0 <= k
 < N.

 Note that if the length of every present edge is 1,
 this problem is just the breadth first search
 problem with N-1 as the only goal node (see the help
 file on breadth_first_search). It can be modified
 to have a set of goal nodes, and is easier to pro-
 gram than breadth first search. But dynamic pro-
 gramming does not generally work as well as breadth
 first search if the nodes cannot be organized into a
 simple array.

B. The solution to one of the parameterized problems
 (e.g. P(i,m)) is typically used very many times in
 computing the solution to the final problem recur-
 sively, so it is important to remember this solution
 as a table entry and not recompute it every time it
 is needed.

 Indeed, in our example P(k,m-1) is used to compute
 P(i,m) for every i, therefore it is used N times.

The word ‘programming’ in ‘dynamic programming’ refers
to describing the table of subproblem solutions and
the order in which the table will be computed.

Dynamic programming can also be used to compute an
actual shortest path, and not just the length of such a
path. There are two ways of doing this:

C. For each P(i,m) record in P_previous(i,m) the last
 node k that is just before i on some shortest path
 from node 0 to node i. This can be computed when
 computing P(i,m):

 when setting P(i,m) = P(k,m-1)
 + edge_length(k,i)
 also set P_previous(i,m) = k

dynamic_programming 09/30/06 06:58:15 2 of 2

D. After computing P(i,m) for all i and m, backtrack
 to build an end segment of the path as follows:

 initially the end segment is just the node N-1
 and m = N-1
 while 0 is not the first node in the end
 segment:
 let i be the first node in the end segment
 find a k such that
 P(i,m) = P(k,m-1) + edge_length(k,i)
 and add k to the beginning of the end
 segment
 set m = m-1

The first step in solving any dynamic programming
problem is to parameterize the problem. But notice
that in our example, the parameter m is not even hinted
at by the original problem statement, which is just to
find the distance between 0 and N-1. We say that m is a
‘hidden parameter’. The essence of solving a dynamic
programming problem is to find the hidden parameter
(or parameters) that are needed to make a fast recursive
algorithm.

The Traveling Salesman Problem
--- --------- -------- -------

Some ‘intractable’ problems have good dynamic program-
ming solutions WHEN THE PROBLEM PARAMETERS ARE SMALL
ENOUGH. An example is the traveling salesman problem:
find the shortest path from node 0 to node N-1 that
visits all the nodes just once. The subproblem for this
is P(i,S): find the shortest path from node 0 to node i
that visits every node in the set S of nodes just once.
Then P(i,{0,1,...,N-1}) is the answer.

However to compute the answer one needs to solve the
subproblem for 2**N values of S, and there are on the
order of N*(2**N) subproblems overall. For N <= 15 this
is doable.

File: dynamic_programming
Author: Bob Walton <walton@deas.harvard.edu>
Date: See top of file.

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2006/09/30 10:58:15 $
 $RCSfile: dynamic_programming,v $
 $Revision: 1.11 $

2D_geometry 10/14/06 13:52:21 1 of 8
2D Geometry Problem Help Sat Oct 14 13:51:23 EDT 2006

For some reason many young computer scientists think
that geometry problems are hard, and avoid them. The
purpose of this discussion is to demonstrate that
geometry problems are fairly easy after all.

We will restrict ourselves here to 2D geometry.

Basics

Let
 p = (px,py) and q = (qx,qy)

be points in the plane. The difference

 v = (vx,vy) = q - p = (qx-px,qy-py)

is the vector from p to q. Its length is

 |v| = sqrt(vx**2 + vy**2)

The scalar product of two vectors

 u = (ux,uy) and v = (vx,vy)

is

 u.v = ux*vx + uy*vy

 = |u| |v| cos(theta)

where theta is the angle between u and v. The sign of
theta does not matter because cos(theta) = cos(-theta).
Note that

 |v| = sqrt (v.v)

Note that u.v = 0 if and only if u and v are orthogonal
(at right angles) to each other, i.e., if theta = + or
- 90 degrees and cos(theta) = 0.

A ‘unit’ vector v is a vector of length 1 (|v| = 1).
If u and v are unit vectors at right angles to each
other, which is the same as saying that

 |u| = 1, |v| = 1, u.v = 0

then one can ask what the coordinates of a point p
would be in the coordinate system in which u is in
the positive direction of the x-axis and v is in the
positive direction of the y-axis. The answer is

 (u.p, v.p)

Note that

 | u.p | | ux uy | | px |
 | | = | | | |
 | v.p | | vx vy | | py |

so u and v are the rows of the 2x2 matrix which by left
multiplication translates from old xy coordinates to new
uv coordinates.

A counterclockwise rotation R(theta) of a vector
v=(vx,vy) by an angle theta is

 | cos(theta) - sin(theta) | | vx |
 R(theta).v = | | | |
 | sin(theta) cos(theta) | | vy |

 | vx cos(theta) - vy sin(theta) |
 = | |
 | vx sin(theta) + vy cos(theta) |

2D_geometry 10/14/06 13:52:21 2 of 8

Most particularly, if theta = 90 degrees, then

 | 0 -1 |
 R(90 degrees) = | |
 | 1 0 |

 R(90 degrees).v = (-vy,vx)

Given two points p and q, it is common to want to change
coordinates so these points are on the x-axis. Let v =
q - p be the vector from p to q. Let w = R(90 deg).v,
so w is orthogonal to v and |w| = |v|. Scalar products
by v measure distance in the v direction, and scalar
products by w measure distance in the w direction. w.q
= w.p; to check this we see that w.p = w.q + w.(p-q) and
w.(p-q) = w.v = (R(90 deg).v).v = 0. Let f = w.q = w.p.
Then for any point r use the new coordinates (rx’,ry’) =
(v.r,w.r-f). We have (px’,py’) = (v.p,0) and (qx’,qy’)
= (v.q,0) because w.p-f = 0 = w.q - f. Because v and w
are orthogonal and both have the same length |v| = |w| =
|R(90 deg).v|, distances between points in the new coor-
dinates are just |v| times distances in the old coordin-
ates. For example, the distance between p and q in the
new coordinate system is |v.q - v.p| = |v.v| = |v|**2
which is |v| times the distance between p and q in the
old coordinate system.

Since (wx,wy) = (-vy,vx) we have

 f = w.p = - vy * px + vx * py
 = w.q = - vy * qx + vx * qy
 w.r = - vy * rx + vx * ry
 ry’ = - vy * rx + vx * ry - f

So the summary of the part of the computation that you
need to remember is

 vx = qx - px
 vy = qy - py
 f = - vy * px + vx * py = -vy * qx + vx * qy
 for r = (rx,ry) the new coordinates are
 rx’ = - vy * rx + vx * ry - f
 ry’ = - vy * rx + vx * ry - f
 distances between points in new coordinates are
 |v| = sqrt (vx*vx + vy*vy)
 times distances between points in old coordinates

Note that if all coordinates in the old coordinate sys-
tem are integers, all coordinates in the new coordinate
system are integers. This is a big advantage if exact
arithmetic is needed, as when one must determine if a
point lies exactly on a line. This is why we do NOT di-
vide all the new coordinates by |v|, and thus must deal
with new coordinate distances that are not identical to
old coordinate distances.

The last coordinate change is basic to much elementary
computational geometry, and you should learn it very
well.

Lines Dividing Planes
----- -------- ------

The line through points p and q, oriented in the direc-
tion from p to q (p != q is assumed), divides the plane
into three parts: points to the right of the line (fac-
ing in the direction from p to q), points to the left of
the line, and points on the line. How do we find out
whether a point r is to the right, left, or on the line?

2D_geometry 10/14/06 13:52:21 3 of 8

If we change coordinates as indicate in the last section
then for r

 vx = qx - px
 vy = qy - py
 f = - vy * px + vx * py = - vy * qx + vx * qy
 ry’ = - vy * rx + vx * ry - f

 ry’ > 0 if r is to the left of the line;
 ry’ == 0 if r is on the line;
 ry’ < 0 if r is to the right of the line;

The distance from r to the infinite line through p and q
is |ry’| in the new coordinates or |ry’|/|v| in the ori-
ginal coordinates.

The Distance of a Point to a Finite Line
--- -------- -- - ----- -- - ------ ----

We just indicated how to find the distance between a
point r and an infinite line that runs through two
points p and q. What if the line is finite with ends p
and q?

Again shift to the new coordinates so that:

 vx = qx - px
 vy = qy - py
 f = - vy * px + vx * py = - vy * qx + vx * qy
 rx’ = vx * rx + vy * ry
 ry’ = - vy * rx + vx * ry - f
 px’ = vx * px + vy * py
 py’ = 0
 qx’ = vx * qx + vy * qy
 qy’ = 0

So p and q are now on the x’-axis and the problem is
fairly easy. There are two cases:

 if rx’ < px’ and rx’ < qx’
 or rx’ > px’ and rx’ > qx’
 then r is off the end of the line from p to q
 and the distance is the minimum of |r-p| and
 |r-q|

 if px’ <= rx’ <= qx’
 or qx’ <= rx’ <= px’
 then r is over the line segment and the distance
 is |ry’|/|v|, the same as the distance from r
 to the infinite line through p and q

Intersection of a Finite Line and an Infinite Line
------------ -- - ------ ---- --- -- -------- ----

When does the infinite line through p1 and p2 intersect
the interior of the finite line from q1 to q2? By
interior we mean the part of the line that excludes the
endpoints. Answer: when q1 is on one side of the infi-
nite line and q2 is on the other side, if we ignore the
special case where q1 and q2 are BOTH on the infinite
line.

2D_geometry 10/14/06 13:52:21 4 of 8

So we can compute:

 vx = p2x - p1x
 vy = p2y - p1y
 f = - vy * p1x + vx * p1y = - vy * p2x + vx * p2y
 q1y’ = - vy * q1x + vx * q1y - f
 q2y’ = - vy * q2x + vx * q2y - f

 then q1 and q2 are on opposite sides of the infinite
 line through p1 and p2 if and only if:

 q1y’ > 0 and q2y’ < 0
 or q1y’ < 0 and q2y’ > 0

 or equivalently: q1y’ * q2y’ < 0

When does the infinite line through p1 and p2 intersect
the finite line from q1 to q2, including the possibility
of intersecting at an end point, i.e., at q1 or q2.
Answer: if and only if q1y’ * q2y’ <= 0. This equation
also handles the case where q1 and q2 are BOTH on the
infinite line.

Convex Hulls and Polygons
------ ----- --- --------

The clockwise convex hull of a set of points V in a
plane is a sequence of points of V, p1, p2, p3, ...,
p(N), such that for every i, all the points of V are on
or to the right of the infinite line from p(i) to
p((i-1 mod N)+1), and such that no point p(j) is on this
line except of course p(i) and p((i-1 mod N)+1). Then
the finite lines from p(i) to p((i-1 mod N)+1) for
i = 1, ..., N are the sides of the smallest convex
polygon such that all the points of V are inside this
polygon or on its boundary.

To specify a polygon we give its boundary, which for a
convex polygon is either its clockwise or counterclock-
wise convex hull. The counterclockwise hull has the
same property as the clockwise hull with ‘left’ replac-
ing ‘right’ in the above definition.

Inside Convex Polygons
------ ------ --------

Suppose we have a clockwise convex hull p1, ..., p(N)
that defines a convex polygon. So the sides of the
polygon with a clockwise orientation are the lines from
p(i) to p((i-1 mod N)+1), for i = 1, ..., N, and no
three of the points p1, ..., p(N) lie on the same line.

Then a point r is inside the convex polygon but not on
the boundary of the polygon if and only if r is to the
right of the infinite line that extends each clockwise
oriented side of the polygon.

A point r is inside OR ON the boundary of a polygon
if and only if r is to the right of OR ON the infinite
line that extends each clockwise oriented side of the
polygon.

Finding the Convex Hull
------- --- ------ ----

To find the convex hull of a finite set of points V,
first find some point p1 on the hull, which can be done
say by choosing a leftmost point in V and given two
leftmost points choosing the highest. Then extend the
hull recursively from p(i) to p(i+1) by using the
following.

2D_geometry 10/14/06 13:52:21 5 of 8

Given a point p, define a relation among points q1, q2
that are not equal to p as follows:

 definition:
 q1 > q2 if and only if
 q2 is to the right of the infinite
 line from p through q1,
 or q2 is on this line and closer to p
 than q1 is.

If p is a hull point, this relation is antisymmetric and
transitive (proof to reader). So given the hull up to
p(i), choose p(i+1) to be the maximum point in V accord-
ing to this relation. Stop when p(i+1) = p1, in which
case N=i.

This is not the fastest algorithm, as it has time
O(|V|*|H|) where |V| is the number of points in V and
|H| is the number of points on the hull. A faster
algorithm is the Graham-scan algorithm that begins with
a sort of V and has running time dominated by the sort
time, O(|V| log|V|). Usually the extra speed is unne-
cessary, but just in case, the Graham-scan algorithm is:

 S = V
 compute p1 as above and remove it from S
 let j = 1
 while S is not empty:
 let p(j+1) be any leftmost point in S and remove
 it from S
 while j >= 2 and p(j+1) is to the left of the
 directed infinite line from p(j-1) to pj:
 set pj = p(j+1)
 set j = j - 1
 if j < 2 or if p(j+1) is NOT on the directed in-
 finite line from p(j-1) to pj, set j = j + 1
 else if p(j-1) is closer to pj than to p(j+1),
 set pj = p(j+1)

When this algorithm stops only half the hull has been
found. To find the other half, reset S to V minus all
the points on the hull, and continue the algorithm with
‘leftmost’ replaced by ‘rightmost’.

Intersection of Two Finite Lines
------------ -- --- ------ -----

Suppose we are given four points, p1, p2, q1, q2.

Question: Does the interior of the finite line from p1
to p2 intersect the interior of the finite line from q1
to q2. By the interior of a line we mean the part of
the line that excludes its end points. Also, we DO NOT
COUNT as intersections parallel lines that overlap,
which we will treat as a special case below.

Answer: The interiors of the lines intersect if and only
if the infinite line through p1 and p2 intersects the
interior of the line from q1 to q2, and the infinite
line through q1 and q2 intersects the interior of the
line from p1 to p2.

If we wanted to know whether the finite lines including
end points intersect, we ask whether the infinite lines
intersect the finite lines, endpoints included. Thus
we use the test q1y’ * q2y’ <= 0 and similarly with the
p’s and q’s exchanged. Again there is a special case
where p1, p2, q1, and q2 are all on the same straight
line and the finite lines may or may not intersect.

2D_geometry 10/14/06 13:52:21 6 of 8

What if p1, p2, q1, and q2 are ALL on the same straight
line? Then p1y’ = p2y’ = q1y’ = q2y’ = 0. We compute
p1x’, p2x’, q1x’, q2x’. There is overlap (endpoints in-
cluded) if and only if at least of the line ends is on
the other finite line, i.e., if at least one of the fol-
lowing is true:

 p1x’ <= q1x’ <= p2x’ q1x’ <= p1x’ <= q2x’
 p2x’ <= q1x’ <= p1x’ q2x’ <= p1x’ <= q1x’
 p1x’ <= q2x’ <= p2x’ q1x’ <= p2x’ <= q2x’
 p2x’ <= q2x’ <= p1x’ q2x’ <= p2x’ <= q1x’

Lines Intersecting Polygons
----- ------------ --------

So when does the interior of a line from r1 to r2 inter-
sect the inside of a convex polygon? It does if the
interior of the line from r1 to r2 intersects the inter-
ior of any side of the polygon, but r1 and r2 are not
both on the infinite line extending this side. It also
does if r1 and r2 are both inside or on the boundary of
the polygon, but are not both on the same single side of
the polygon.

These are the only two cases where the interior of the
line from r1 to r2 can intersect the interior of the
polygon, UNLESS some of the convex hull points p1, ...,
p(N) are in the interior of the line from r1 to r2. In
this last case, use a convex hull point in the interior
of the line to divide the line in two, and recursively
ask if the interiors of either of the two new line seg-
ments intersect the interior of the polygon.

So all one has to do is take each clockwise side of the
polygon and check that r1 and r2 are not both on that
side and either the interior of the finite line from r1
and r2 intersects the interior of the side, or r1 and r2
are both on or to the right of the infinite line exten-
ding the side. During this process one checks each
convex hull point p to see if it is in the interior of
the line from r1 to r2, and if it is, one then divides
the line from r1 to r2 up into two segments, one from r1
to p and one from p to r2, and then one applies the
algorithm recursively to see if the interior of either
of these two segments intersects the interior of the
polygon.

Polygon Maze
------- ----

Problem: Given a set of convex polygons in a plane, and
two points p and q outside any convex polygon, find the
shortest path from p to q that does not go inside any
convex polygon. Paths may travel on the edges of a
polygon if these are not inside some other polygon.

Solution: Let V be the set of vertexes of the polygons
plus the two points p and q. Then the path to be found
can be represented as a sequence of straight line
segments with vertexes in V (proof to reader). So it
is a shortest path in an undirected graph whose vertexes
are V such that given points r1 and r2 in V, there is
an edge in this undirected graph between r1 and r2 if
and only if the interior of the line from r1 to r2 does
not intersect the interior of any polygon. Actually, we
can make the computation simpler by also deleting an
edge from r1 to r2 if the interior of the line from r1
to r2 contains any member of V, as the shortest path can
be composed of line segments between members of V that
do not contain other members of V.

2D_geometry 10/14/06 13:52:21 7 of 8

Circular Anti-Maze
-------- ---------

Find the shortest path between two points in a plane
that has circular holes in it. The part of a path that
transverses a hole does NOT count toward the length of
the path.

Solution: let V be the set consisting of the two points
and the centers of the holes. Then the path consists of
straight line segments with end points in V. The
length of each segment is the distance between its ends
minus the radius of any hole centered at one end, or is
0 if this length is negative. The reader should try to
prove that his works, even when holes overlap.

Robot Arms
----- ----

Suppose we have a planar robot arm. Such an arm con-
sists of line segments in an order. The beginning of
each segment is a pivot point, around which a servo can
rotate the segment and anything attached to its end.
The end of a segment is attached to the beginning of the
next segment, or to the robot hand if the segment is the
last segment of the arm. We will define the end of the
last segment to also be a pivot point: it could have a
servo to rotate the hand.

The parameters of the arm are the lengths of the seg-
ments and the angular settings of the servos. A servo
is typically set to have 0 angle if the segment follow-
ing it continues in the same direction as the segment
preceding it. We will assume that a positive angle
means the arm following the servo is rotated counter-
clockwise by that angle. Particular robot arms may use
other conventions for servo angles. We will also assume
that the first pivot point is at the origin, and that
the setting of 0 degrees for the first servo points the
first segment along the positive x-axis.

The position of the pivot points of such an arm can be
computed recursively by induction on the number of
segments in the arm. If there are 0 segments, there is
only one pivot point (the hand’s), and it is at the
origin. The setting of the servo at that pivot point
is irrelevant to the position of the pivot points.

If there are more than 0 segments, assume for the
moment that the first segment is such that its end (not
its beginning) is at the origin and its orientation is
in the direction of the positive x-axis, so its servo
setting is 0 degrees.

Next compute the positions of the pivot points at the
ends of the other segments by a recursive call, pretend-
ing that the first segment does not exist, so the arm
has one fewer segments than it actually has.

Now translate the origin to the beginning of the first
segment by adding the length of this segment to the
x coordinate of every pivot point. The beginning of the
first segment is now the origin. The setting of the
first servo is still 0 degrees.

Now rotate all the pivot points about the origin by the
amount indicated by the setting of the first servo.
This finishes the computation.

2D_geometry 10/14/06 13:52:21 8 of 8

This computation is easy because we use recursion to
build the arm from its end, and not from its beginning.

File: 2D_geometry
Author: Bob Walton <walton@deas.harvard.edu>
Date: See top of file.

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2006/10/14 17:52:21 $
 $RCSfile: 2D_geometry,v $
 $Revision: 1.21 $

breadth_first_search 09/29/06 08:33:13 1 of 2
Breadth First Search Fri Sep 29 07:57:17 EDT 2006
Problem Help

Breadth first search is most commonly used in maze
problems, but can be used in other problems. The idea
behind search is that one has a set of nodes, each node
has a list of other nodes that are its children, and the
search begins at a start node and progresses from the
current node to one of its children until the search
finds a goal node.

The idea behind breadth first search is that one makes a
‘visited list’ of the nodes in the order that they are
first visited by the search, and one has a pointer into
this list at the first node whose children have not yet
been examined. Then one iteratively examines the child-
ren of the node pointed at, adds any children that are
not yet on the visited list to the end of the visited
list, and bumps the pointer to the next node on the
visited list. One stops when one gets to a goal node,
or fails if one runs out of nodes to examine.

(Depth first search is similar, except that the children
are added to the visited list immediately after the node
that is their parent, the node currently being examined
for children. Depth first search with a visited list is
almost unheard of in programming contests, but recursive
exhaustive search which visits ALL nodes in depth first
order is common.)

There are three approaches to making a visited list:

A. If the set of possible nodes is small and can be
 organized into an array, don’t do breadth first
 search, but instead use dynamic programming. See
 the help file on dynamic programming.

B. If the size of a node description is fixed and not
 large, and the maximum number of nodes that might
 be visited is not too large, make a large fixed size
 vector of nodes and two pointers: one to the next
 empty element and one to the first element whose
 children have not yet been examined.

C. Otherwise allocate each node as it is visited. You
 will need a pointer in each node to the next node
 (or NULL if there is none), a pointer to the first
 node, a pointer to the last node, and a pointer to
 the first node whose children have not yet been
 examined. When an input test case is complete, you
 will need to deallocate all the nodes starting with
 the first node.

Given your choice of visited list data structure, you
need the following functions:

1. A function which given the parameters describing a
 node, determines whether the node is already in the
 visited list. This can be done by a linear search
 of the list. In some cases this is not fast enough,
 and a hash table is needed: see below.

2. A function which given the parameters describing a
 node creates a new node and adds it to the end of
 the visited list.

3. A function which checks a node to see if it is a
 goal node.

4. A function which given a node generates for each
 child of the node a call to function 1 to see if the
 child is on the visited list already, and if not,
 a call to function 2 to add the child to the list
 and then a call to function 3 to see if the added
 child is a goal.

breadth_first_search 09/29/06 08:33:13 2 of 2

Given these it is easy to code the algorithm in a few
lines.

In order to construct the shortest path to the goal
node, each node that is visited needs to record its
parent. Then starting from the goal node and working
backward a shortest path can be constructed.

If a linear search of all the visited nodes is not fast
enough, a hash table can be used. The idea of a hash
table is that instead of having one long lookup list, we
have many short lookup lists. Suppose we want M lookup
lists. We write a hash function that takes the para-
meters describing a node and returns an integer i, the
hash value of the node, where 0 <= i < M. The node’s
hash value i names the lookup list on which the node
will be placed. The hash table is a vector H such that
H[i] is the head of lookup list i. Each node is now on
two lists, a lookup list and the list of all visited
nodes.

Then the function to find a node in the visited list
computes the node’s hash value i and linearly searches
just list H[i]. The function to put a node on the end
of the visited list must computed the node’s hash value
i and add the node to the H[i] list. All this works
well if for typical sets of actual nodes the hash
function generates its M possible values about equally
often. Then the expected length of each lookup list
will be N/M, where N is the total number of nodes and M
is the number of lookup lists.

File: breadth_first_search
Author: Bob Walton <walton@deas.harvard.edu>
Date: See top of file.

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2006/09/29 12:33:13 $
 $RCSfile: breadth_first_search,v $
 $Revision: 1.6 $

