
problems 10/15/08 09:32:32 1 of 1
Problems Index Wed Oct 15 09:32:32 AM EDT 2008

The problems are in approximate order of difficulty,
easiest first. The last two problems are particularly
difficult.

 problems/equity
 So you think you know stocks?
 Boston Preliminary 2008

 problems/birthday
 Pseudo-random cannot be really random.
 Boston Preliminary 2008

 problems/tableformatter
 Simple work aids make life easier.
 Boston Preliminary 2008

 problems/buffalo
 Lost in space? Call out the hound!
 Boston Preliminary 2008

 problems/paxos
 Stable memory without disks.
 Boston Preliminary 2008

 problems/twolegs
 A maze does the splits.
 Boston Preliminary 2008

 problems/supercounter
 Tough counting.
 Boston Preliminary 2008

 problems/convexhull
 A tight fit in 3D.
 Boston Preliminary 2008

equity.txt 10/15/08 09:18:19 1 of 5
Equity

You have been asked to write a program that will print
information that can be used to evaluate the financial
situation of a company. The input is raw data about a
company for a sequence of years, and the output is an
income statement and balance sheet for the company for
each year.

Input

The input is a set of lines each of which consists of
a data type character followed by a datum. These are

N<company-name>
 All the data lines following, until the next N line
 or end of file, are for a company with the given
 name. All data for one company is grouped together;
 any two different N lines are for different compan-
 ies. An N line is always followed by a Y line.
Y<current-year>
 All the data lines following, until the next N or
 Y line or end of file, are for the given ‘current
 year’. The Y lines for one company are sequentially
 increasing; that is, every Y line but the first for
 a given company contains a value one greater than
 the value of the previous Y line for the company.
S<sales>
 The sales (i.e. revenue) of the company in the
 current year.
R<received>
 The amount of money received from sales for the
 given year. If you sell $1,000 worth and receive
 $900, then you are still owed $100, which is called
 a ‘receivable’.

O<operating-cost>
 The cost of operating the company during the current
 year. This is the cost of manufacturing, adminis-
 tration, sales, advertising, etc. (but NOT the cost
 of capital expenditures, interest, dividends, or
 taxes).
P<paid>
 The amount of the operating cost you actually paid
 during the current year. If your cost was $1,000
 and you paid $900, the you still owe $100, which is
 called a ‘payable’. If instead you paid $1100, then
 presumably you had at least $100 of payables carried
 over from the previous year and paid off $100 of it.
C<capital-expenditures>
 Amount of money spent on capital (land purchases,
 construction, machinery, trucks, etc.) in the
 current year.
D<depreciation>
 The amount of capital that is to be charged against
 income in the current year. If you pay $30,000 for
 a truck in 2003, rather than charge it all against
 income in 2003, you may charge $10,000 in each of
 the three years 2003, 2004, and 2005 as ‘deprecia-
 tion’. If you pay $1,000 for land, however, you may
 never charge anything to depreciation, on the
 grounds that the land value does not depreciate.
I<interest>
 Interest paid on bonds in the current year.
T<taxes>
 Taxes paid in current year.
V<dividends>
 Dividends paid to stock holders in the current year.
E<new-equity>
 Amount taken in from venture capitalists or by sell-
 ing new shares of common stock, minus amount paid
 out to venture capitalists or to buy back the
 company’s shares of common stock, for the current
 year.

equity.txt 10/15/08 09:18:19 2 of 5

B<new-debt>
 Amount of bonds sold minus amount of bonds retired
 during the current year.
G<inventory-change>
 Value of goods produced for sale minus value of
 goods sold during the current year.

More than one company is described in the input. The N
value is a character string (all the characters after
the N until the end of line). All the other values are
integers, which may be negative in some cases. All the
integer values are in some unspecified unit, such as
millions of dollars or thousands of dollars, except of
course the years. If any of the dollar values are not
given for a year, they are to be taken to be zero.
E.g., in the first year of a company, we might give only
Y, E, and C lines, and this means that all the other
dollar values are zero.

Input ends with an end of file.

Output

The output is an income statement and a balance sheet
for each company year for which data is provided in the
input.

The format of the output is as given in the Sample
Output. All numbers are integers (you can think of them
as being in millions or thousands of dollars). All
integers must be printed with their low order digit
exactly in column 40. Only negative integers have a
sign, and no high order zeros may be printed. Consecu-
tive words and years in the output must be separated by
a single space; and you may assume that this is true of
company names given in N lines.

Each non-blank output line starts in either column 1 or
column 3, and this indentation must be exactly as in the
Sample Output. You can assume the N input line value is
well formatted, and you should just copy that line with
its initial ‘N’ removed to an output line.

There should never be two blank lines in a row, and
blank lines must be included as indicated in the Sample
Output. There MUST NOT be any blank line at the
beginning or end of output (be careful of this).

Note that failure to follow any of the spacing rules
will result in a ‘Formatting Error’ score for your
program if everything else is correct.

In what follows, single capital letters such as S and I
mean ‘the S input line value’ and ‘the I input line
value’, etc. The output is computed as follows:

‘Income Statement’ for a given company and year:

 Operating Revenue: S
 Operating Cost: O
 Depreciation: D
 Operating Income: Operating Revenue - Operating Cost
 - Depreciation.
 Interest: I
 Taxes: T
 Earnings: Operating Income - Interest - Taxes.
 Dividends: V
 Transfer to Equity: Earnings - Dividends.

‘Balance Sheet’ for a given company and year:

 All these values are for the end of the current
 year. These values are all set to zero before the
 first year of a company (i.e, by each N input line).

equity.txt 10/15/08 09:18:19 3 of 5

 Assets:
 Cash: Cash from previous year + R - P - C + E
 + B - I - T - V.
 Inventory: Inventory from previous year + G.
 Receivables: Receivables from previous year
 + S - R.
 Current Assets: Cash + Inventory + Receivables.
 Fixed Assets: The Fixed Assets from the pre-
 vious year + C - D. (Essentially
 the undepreciated capital).
 Total Assets: Current Assets + Fixed Assets.

 Liabilities:
 Payables: Payables from previous year + O - P.
 Current Liabilities: Payables
 Debt: Debt from previous year + B.
 Total Liabilities: Current Liabilities + Debt.

 Equity: Total Assets - Total Liabilities.

You may find it helpful to program the following check
into your program as a debugging aid:

 Equity = Equity from the previous year
 + Transfer to Equity + E + G

Note that neither assets nor liabilities may be
negative, and among input values only E, B, and G may be
negative, but the income, earnings, transfer to equity,
and equity values can be negative. Mathematically it
would be possible for an asset like cash to go negative,
but it would be an accounting error if this happened.

Sample Input
------ -----

NBills’s Toothpaste Company
Y1950
E15
C20
B10
Y1951
S30
R27
O25
P24
D3
I1
G1
T1
V1
NGreat Flame Barbecue
Y1975
E5
C4
S10
R9
O6
P5
T1
G1

equity.txt 10/15/08 09:18:19 4 of 5

Sample Output
------ ------

Bills’s Toothpaste Company

1950 Income Statement:
 Operating Revenue: 0
 Operating Cost: 0
 Depreciation: 0
 Operating Income: 0
 Interest: 0
 Taxes: 0
 Earnings: 0
 Dividends: 0
 Transfer to Equity: 0

1950 Balance Sheet:
 Cash: 5
 Inventory: 0
 Receivables: 0
 Current Assets: 5
 Fixed Assets: 20
 Total Assets: 25
 Payables: 0
 Current Liabilities: 0
 Debt: 10
 Total Liabilities: 10
 Equity: 15

1951 Income Statement:
 Operating Revenue: 30
 Operating Cost: 25
 Depreciation: 3
 Operating Income: 2
 Interest: 1
 Taxes: 1
 Earnings: 0
 Dividends: 1
 Transfer to Equity: -1

1951 Balance Sheet:
 Cash: 5
 Inventory: 1
 Receivables: 3
 Current Assets: 9
 Fixed Assets: 17
 Total Assets: 26
 Payables: 1
 Current Liabilities: 1
 Debt: 10
 Total Liabilities: 11
 Equity: 15

Great Flame Barbecue

1975 Income Statement:
 Operating Revenue: 10
 Operating Cost: 6
 Depreciation: 0
 Operating Income: 4
 Interest: 0
 Taxes: 1
 Earnings: 3
 Dividends: 0
 Transfer to Equity: 3

1975 Balance Sheet:
 Cash: 4
 Inventory: 1
 Receivables: 1
 Current Assets: 6
 Fixed Assets: 4
 Total Assets: 10
 Payables: 1
 Current Liabilities: 1
 Debt: 0
 Total Liabilities: 1
 Equity: 9

equity.txt 10/15/08 09:18:19 5 of 5

Remarks:

The above comes mostly from ‘The Interpretation of
Financial Statements’ by Benjamin Graham. However the
above is an over-simplification, and there are also
terminological problems and accounting method disputes
that the author of this problem is not qualified to deal
with.

To take one example, a company with a good balance sheet
should have perhaps twice as much Current Assets, which
might be interpreted as assets that could be converted
into cash in a year, than Current Liabilities, which
might be interpreted as liabilities that must be paid in
a year. Above we assumed that all bonds were long term
and none were current liabilities, but some modern
companies have taken to issuing lots of short term
(e.g., three month) bonds which should be listed as
Current Liabilities.

Even a real balance sheet is an over-simplification.
For example, some inventory may be unsellable and have
to be ‘written off’ as a loss eventually, and similarly
some receivables may be uncollectible. The networking
hardware companies leased much of their hardware to the
dot-com bubble companies and had to write off large
amounts of receivables when the dot-com bubble burst.

File: equity.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Wed Oct 15 09:11:05 EDT 2008

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2008/10/15 13:18:19 $
 $RCSfile: equity.txt,v $
 $Revision: 1.7 $

birthday.txt 10/15/08 09:20:51 1 of 3
The Birthday Paradox
--- -------- -------

Suppose you pick m numbers at random, each between 1 and
n. How large does m have to be before we can expect to
see two numbers that are the same?

The answer is about the square root of 2n, which is
surprisingly small. For example, if n = 365, the number
of days in the year, m = 28 will do. One way to pick
numbers from 1 through 365 is to pick people and take
their birthdays. Thus if you have 28 people in a room,
you can expect two to have the same birthday. For this
reason the phenomenon we have just described is called
the ‘Birthday Paradox’.

The Birthday Paradox has some surprising applications.
Suppose you have a pseudo-random number generator that
uses the sequence

 x(i+1) = A*x(i)^2 + B*x(i) + C (modulo n)

 x(0) = D

for some constants n, A, B, C, and D to generate numbers
x(0), x(1), x(2), ... which we hope act like a sequence
of random numbers. Suppose they really are like random
numbers. Then by the birthday paradox the sequence of
numbers will start repeating itself after about m =
square root of 2n numbers. That is, if we find the
smallest m > 0 and i > 0 such that x(i+m) = x(i), then
typical values of m and i are on the order of the square
root of 2n. Note that given such values, by the nature
of the above equation, x(j+m) = x(j) for all j >= i, and
we say the sequence has a cycle of length m.

The theory here is not rigorous, because the sequence
x(0), x(1), x(2), is not a rigorously random sequence.
In this problem you will be given n, A, B, C, and D and
asked to compute i and m (the start and length of first
cycle) and print these and the square root of n. Just
to see if the theory works most of the time.

Input

For each test case, one line containing

 n A B C D

Here 2 <= n <= 40,000; 0 <= A,B,C,D < n. The input
ends with an end of file.

Output

For each test case, one line containing

 n A B C D i m r

where r = ceil (sqrt (2 * n)) as an integer (ceil is
the ceiling function and sqrt the square root function),
and each integer of the 8 integers is printed right
adjusted in exactly 7 columns.

birthday.txt 10/15/08 09:20:51 2 of 3

Remark

We limit n <= 40,000 in order to permit implementations
to use 32 bit integers. Note, however, that A * x * x
may not fit into 32 bits, though x * x and A * n will.
If you want to use 64 bit integers (‘long long’ in C and
C++ and ‘long’ in JAVA), you can compute with larger
values of x.

If you use a vector of integers of length n the size of
n will still be limited. But there are simple clever
implementations that do not need a vector and use almost
no memory for any size of n.

Sample Input
------ -----

100 43 23 17 5
199 0 2 0 1
8191 5 2685 0 7
32749 0 1944 0 5

Sample Output
------ ------

 100 43 23 17 5 2 2 15
 199 0 2 0 1 0 99 20
 8191 5 2685 0 7 155 115 128
 32749 0 1944 0 5 0 32748 256

Remark

The pseudo-random number generators that are actually
used pick A, B, C, and D so the shortest cycle is of
length n or n-1. One has to be smart about picking A,
B, C, and D. One old but usable set is

 A = 0, B = 7^5, C = 0, D > 0, n = 2^31 - 1

or in other words,

 x(i+1) = 7^5*x(i) modulo (2^31-1)

with D any non-zero value. Another set that you can
test your program with is

 A = 0, B = 1944, C = 0, D > 0, n = 2^15 - 19

which should have i = 0 and m = n - 1, the maximum
possible cycle length.

The irony is that to get a good random number generator,
the sequence cannot really be random.

Remark

Pollard’s rho algorithm makes clever use of cases such
as
 A = 1, B = 0, C = n - 2

to find factors of n for values of n up to 2^256 + 1.

birthday.txt 10/15/08 09:20:51 3 of 3

File: birthday.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Wed Oct 15 09:18:40 EDT 2008

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2008/10/15 13:20:51 $
 $RCSfile: birthday.txt,v $
 $Revision: 1.7 $

tableformatter.txt 10/15/08 09:25:02 1 of 3
Making a Table Formatter
------ - ----- ---------

Olivia went to work for State Report Writers Inc. and
found herself writing a lot of plain ASCII text files
containing tables that looked like:

+-------------+--------+--------+--------+
| Year | 2001 | 2002 | 2003 |
+-------------+--------+--------+--------+
| Population | 37,452 | 37,459 | 37,620 |
+-------------+--------+--------+--------+
| Number of | 13,645 | 13,652 | 13,684 |
| Households | | | |
+-------------+--------+--------+--------+

Getting things all lined up was becoming a real pain, so
she wants a program to do it for her.

The program takes as input a text file whose tables are
defective, and outputs the file with the defects
corrected. The permitted defects are:

 (1) Lines beginning with + can have any garbage
 after the +, and will be converted into proper
 row separating lines.

 (2) If the first character of a table line is not
 + or |, it will be assumed that an initial |
 is missing from the line.

 (5) The |’s and the text in a line need not be
 properly aligned, except a | that should not
 appear at the very beginning of a line may
 not be moved to the beginning of the line.

 (4) A trailing sequence of |’s and spaces may be
 missing from a line.

 (5) There may be empty columns in the table (columns
 all of whose entries are blank). These empty
 columns should be deleted.

 (6) The last + line of the table may be omitted.

The program reads its input, outputs table lines after
reformatting them, adds a table end + line if necessary,
and outputs exact copies of any non-table lines. A
table begins with a line whose first character is +, and
ends just before the next blank line or file end.

Text in a table box should be separated by at least one
space from any |. Within each line, the text in a
box should be left adjusted if it contains any letters,
and right adjusted otherwise. Note that text in a box
may be left adjusted on one line and right adjusted on
another line; each line is treated independently as far
as text adjustment is concerned. Any spaces embedded
inside the text (i.e., not next to |’s or line ends)
should be preserved. All table lines should have the
same length, and this should be the minimum length con-
sistent with the given rules.

To simplify coding the only whitespace character allowed
in a line is the single space character, and lines are
not permitted to end with space characters. Thus a
blank line will be completely empty. This rule applies
to input lines, and you must apply it to output lines.

If you get only the spacing wrong, your program will be
given the ‘Formatting Error’ score.

tableformatter.txt 10/15/08 09:25:02 2 of 3

Input

The text to be reformatted. This text can contain any
number of tables. No input line will be longer than 80
characters. The text ends with an end of file. The
input will be such that every table contains at least
one non-empty column. The input ends with an end of
file.

Output

The input text after it is reformatted. Note that
output lines may be longer than 80 columns due to
reformatting, but the input will be such that no output
line is longer than 132 characters.

Sample Input
------ -----

FLEAS IN THE MIDDLE COUNTIES

by Dr. Troubledstat
edited by Olivia Oliviana

+
County | 2001 | 2002 | 2003
+
Upper Middle | 4,589,290 | 2,976,384 | 10,000,000
+
Middle Middle | 7,671,004 | 5,804,027 | 20,000,000
+
Lower Middle | 8,612,920 | 5,790,468 | 1,764,893
+

This is a

 TEST TABLE

+98435632-6987234899-8g544285-9245724||--
|0123456789 ||0123456789
123 || $789.87 |
A123
+++++++++++++++++++++
| H21 || x y z |||
foo
|||*&^%$#@

tableformatter.txt 10/15/08 09:25:02 3 of 3

Sample Output
------ ------

FLEAS IN THE MIDDLE COUNTIES

by Dr. Troubledstat
edited by Olivia Oliviana

+---------------+-----------+-----------+------------+
| County | 2001 | 2002 | 2003 |
+---------------+-----------+-----------+------------+
| Upper Middle | 4,589,290 | 2,976,384 | 10,000,000 |
+---------------+-----------+-----------+------------+
| Middle Middle | 7,671,004 | 5,804,027 | 20,000,000 |
+---------------+-----------+-----------+------------+
| Lower Middle | 8,612,920 | 5,790,468 | 1,764,893 |
+---------------+-----------+-----------+------------+

This is a

 TEST TABLE

+------------+------------+
0123456789	0123456789
123	$789.87
A123	
+------------+------------+	
H21	x y z
foo	
	*&^%$#@
+------------+------------+

File: tableformatter.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Wed Oct 15 09:21:16 EDT 2008

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2008/10/15 13:25:02 $
 $RCSfile: tableformatter.txt,v $
 $Revision: 1.9 $

buffalo.txt 10/15/08 03:06:00 1 of 2
Buffalo Finder
------- ------

Ranchy Flatman is a buffalo rancher who has lived on the
Plains for decades. He has a ranch on which he keeps
buffalo in a field with three sides. Each side is
bounded by a perfectly straight fence which actually
extends in both directions well beyond Ranchy’s field,
and which serves as a boundary between various fields
owned by various other people. In all there are 7
fields, Ranchy’s triangular field, and 6 neighboring
fields.

Sometimes Ranchy loses track of a buffalo. Then he
sends his trusty Beagle Issy (‘I Smell You’) out to
find the errant buffalo. Issy wears a GPS receiver and
a radio, and this sends Issy’s position back to Ranchy.
When Issy finds the buffalo, she stops, and Ranchy then
knows the buffalo’s GPS coordinates. If the buffalo has
gotten lost in Ranchy’s field, Ranchy goes out to find
the buffalo, but if the buffalo is in a neighbor’s
field, Ranchy must call up the neighbor who will go with
Ranchy to retrieve the Buffalo and Issy.

In order to make this work, Ranchy’s daughter has worked
out the following naming system for fields, and program-
med the family computer to tell Ranchy which field Issy
is in. The corners of Ranchy’s triangular field are
given the names 1, 2, and 3 in clockwise order, and the
fences are given names 12, 23, and 31 in clockwise
order. A given field can be either to the left or right
of a given fence. So we can give a field a name of the
form

 D12 D23 D31

where Dxy is ‘L’ if the field is to the left of fence xy
and ‘R’ if the field is to the right of fence xy when
traveling in the direction from x to y. Thus Ranchy’s
triangular field is named RRR and if you cross fence 12
from this field you enter field LRR.

To find out which field Issy is in, the GPS coordinates
of Issy and the corners 1, 2, and 3 are used. The GPS
coordinates are treated as integer coordinates of points
in a flat plane.

Due to an unfortunate accident, Ranchy’s daughter’s
computer program has been lost, and as she is off at
college and in the middle of exams, you have been tasked
to replace it.

Input

For each test case, one line of the form

 x1 y1 x2 y2 x3 y3 xi yi

where (x1,y1), (x2,y2), (x3,y3) are the coordinates of
the corners 1, 2, and 3, respectively, and (xi,yi) are
Issy’s coordinates. All coordinates are integers.
Input ends with an end of file.

For simplicity, the input will be such that Issy is
never exactly on a fence.

Output

For each test case one line containing just
the name of the field containing Issy.

buffalo.txt 10/15/08 03:06:00 2 of 2

Sample Input
------ -----
-3 -3 0 6 3 -3 0 0
-3 -3 0 6 3 -3 -5 0
-3 -3 0 6 3 -3 0 10
-3 -3 0 6 3 -3 5 0
-3 -3 0 6 3 -3 10 -4
-3 -3 0 6 3 -3 0 -4
-3 -3 0 6 3 -3 -10 -4

Sample Output
------ ------

RRR
LRR
LLR
RLR
RLL
RRL
LRL

File: buffalo.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Wed Oct 15 03:05:19 EDT 2008

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2008/10/15 07:06:00 $
 $RCSfile: buffalo.txt,v $
 $Revision: 1.6 $

paxos.txt 10/15/08 09:26:34 1 of 7
The PAXOS Algorithm
--- ----- ---------

The PAXOS algorithm was developed by Leslie Lamport (and
independently by others) to make a decision rapidly in a
distributed computer system where any processor can
fail. You have been asked to simulate the algorithm in
order to get a sense of how it works.

A distributed system is a set of processes connected to
each other by communication channels. For the purposes
of this problem, we assume there are two channels
between every pair of processes, one channel going in
each direction.

In order for a distributed system to run as fast as
possible, it should be ‘asynchronous’. This means that
as soon as a process receives a message, it computes its
new state and sends appropriate messages to other
processes, without waiting for any particular time.
However, there is a theorem that any asynchronous
distributed algorithm will stop dead if just one process
fails at exactly the wrong moment. Thus asynchronous
distributed algorithms can fail if just one of their
processes fails.

The PAXOS algorithm can be thought of as an asynchronous
decision making algorithm that can be run more than once
to make the same decision. That is, there can be more
than one instance of the algorithm. If one instance
appears to be failing, another instance can be started.
The algorithm has the critically important property that
if several of the instances succeed in coming to a
decision, they will all come to the SAME decision.

The algorithm description is as follows:

(1) For our purposes, the decision is to be made between
 two values, labeled ‘B’ and ‘C’. In the real world
 the decision is most often between ‘aborting’ and
 ‘committing’ a data base transaction, so you can
 think of ‘B’ as meaning ‘abort’ and ‘C’ as meaning
 ‘commit’.

(2) Each algorithm instance has a single master process.
 This process will make the decision and send it
 to all the the other processes. The master of the
 first instance is generally chosen by the nature
 of the decision being made, and the masters of later
 instances are simply processes that, using clocks,
 have decided that previous algorithm instances are
 unduly delayed and a new algorithm instance needs to
 be started.

 All the processes other than the master for an
 instance are called the slaves of that instance. A
 process can be the master of some algorithm
 instances and a slave in other instances.

(3) Each instance is assigned an identifier. No two
 instances may have the same identifier, and the
 identifiers are ordered so that instances started
 later are later in the ordering. In the real
 world identifiers are typically numbers whose
 high order bits are the time of day and whose low
 order bits are a unique process identifier.

paxos.txt 10/15/08 09:26:34 2 of 7

(4) Processes communicate by messages sent over chan-
 nels. We assume there are n processes numbered
 from 1 through n, and there is exactly one directed
 channel connecting message sending process j to
 message receiving process k, for every pair of
 processes j and k with j != k. We assume each
 channel delivers messages reliably and in the order
 they were sent, BUT, with arbitrary delay. Such a
 channel can be built on top of unreliable communica-
 tions by an appropriate channel protocol, which we
 do not consider here (in the real world the internet
 TCP protocol would likely be used).

 We assume each channel can hold exactly one message,
 which has been sent but not received. We assume
 that if a second message is sent to the channel
 when the channel is not empty, any previous message
 in the channel is discarded and lost. This behavior
 just simplifies the code of our simulation; a real
 world channel probably would not discard messages
 very often.

(5) The algorithm messages have the following formats,
 where lower case letters are variables and upper
 case letters are constants:

 m s N i
 New-instance (N) message, sent from instance
 master process m to instance slave process s,
 announcing that a new instance has been created
 with identifier i.

 s m A i pd pi
 (New-instance) acknowledgment (A) message, sent
 from instance slave s to instance master m, for
 the instance with identifier i. pd and pi are
 the values of variables maintained by the slave
 as part of its state (see below).

 m s P i d
 Proposal (P) message, sent from instance master
 process m to instance slave process s, for the
 instance with identifier i, proposing that the
 instance decision be d (d == B or C).

 s m Q i
 Proposal acknowledgment (Q) message, sent merely
 to acknowledge the above proposal (P) message.

 m s F i
 Final (F) message, sent from instance master
 process m to instance slave process s, for the
 instance with identifier i, stating that the
 proposed decision for instance i has become
 the final decision of the set of all instances,
 and no subsequent instance will ever propose a
 different decision.

(6) Each process maintains the following variables:

 imax The latest (maximum) instance identifier
 for which the process has either
 received or sent a new-instance (N),
 proposed (P), or final (F) message.
 Initialized to -1. All instance
 identifiers are integers >= 0.

 pd The decision value in the last proposal
 (P) message the process has either sent
 or has received and not ignored.
 Initialized to X (meaning no proposal
 has been received).

 pi The instance identifier in the last pro-
 posal (P) message the process has either
 sent or has received and not ignored.
 Initialized to -1.

paxos.txt 10/15/08 09:26:34 3 of 7

 Note that a master maintains these variables as if
 it were also a slave that receives and does not
 ignore all the messages the master sends.

 Here -1 is treated as an instance identifier value
 that is less than any actual instance identifier.

(7) Any received message is ignored (discarded) if
 it is a message whose instance identifier i is LESS
 THAN the receiver’s current imax variable value.

(8) There are n processes. Let m be the smallest inte-
 ger such that 2m > n. Any set of processes with m
 members is called a ‘majority’.

 PAXOS uses the fact that any two majorities must
 overlap.

(9) The instance algorithm is:

 (a) The master picks an instance identifier i
 based on the current time. This must be greater
 than the imax variable value of the master, and
 should be greater than the identifier of any
 previous instance.

 (b) The master sends new-instance (N) messages to
 all slaves. Upon receiving and not ignoring the
 N message, a slave sends an acknowledgment (A)
 message back to the master containing the
 slave’s pd and pi variable values.

 (c) As soon as the master receives m-1 acknowledg-
 ment (A) messages, it makes a proposed decision.
 It knows at this point the pd and pi values of m
 processes, the m-1 acknowledging slaves and the
 master itself. If all pd values are X, meaning
 ‘not yet set’, the master is free to make any
 decision it wants (this will be the case for the
 first instance). Otherwise the master chooses
 the pd value whose associated pi value is
 greatest.

 (d) The master sends proposal (P) messages to all
 slaves containing the new proposed decision.
 Any slave receiving and not ignoring this
 message returns a proposal acknowledge (Q)
 message to the master. During this process
 activity the pd and pi variable values of the
 master and all acknowledging slaves are updated.

 (e) As soon as the master receives m-1 proposal
 acknowledgment (Q) messages, it sends a final
 (F) message to all slaves. Note that in the our
 simulation slaves ignore final (F) messages,
 though in the real world they would not.

Event Specification

The simulation you have been asked to perform represents
algorithm execution as a sequence of events. The events
are numbered 1, 2, 3, etc., and the simulation input
contains a list of event specification lines that are
each one of the following:

paxos.txt 10/15/08 09:26:34 4 of 7

 N m d
 Process m becomes the master of a new instance
 whose instance identifier is the number of the
 current event and whose decision will be d (B or
 C) if the master is free to choose in step (c)
 above. The event consists of the new master
 updating its variables and sending new-instance
 (N) messages to every other process.

 R j k
 Process k receives the message in the channel
 whose sending process is j and whose receiving
 process is k, if there is a message in that
 channel. If there is no message, there is no
 event. If there is a message, the event
 consists of the receiving process updating
 its variables and sending messages to other
 other processes as specified by the algorithm
 steps above.

Events in general send messages (except for events where
a received message is ignored). Sending a message
consists of placing the message in the appropriate
channel. If necessary any previous message in the
channel is first discarded.

Input

The input consists of several test cases. Each test
case consists of

 a line containing the name of the test case
 a line containing the number n of processes
 zero or more event specification lines
 a line containing only the character ‘E’

Here 2 <= n <= 32. The input terminates with an end
of file.

Output

For each test case the line containing the name of the
test case is output. Then for each event the output
is as follows:

(a) If the event is the creation of a new instance,
 a line of the form ‘e: NEW INSTANCE m d’ is output,
 where e is the event number, and also the identifier
 of the new instance, and m and d are taken from the
 ‘N m d’ event specification.

(b) If the event is the reception of a message, a line
 is output of the form ‘e: message action’ where
 e is the event number (1, 2, 3, etc.), the ‘message’
 is the received message in the message format given
 above with single spaces surrounding it and
 separating its parts, and the ‘action’ is one of the
 following words:

 IGNORED The message is ignored as per (7)
 above.

 COMMITTING The message is the m-1’st proposal
 (P) message to be received and not
 ignored by a slave for a given
 instance.

 ACCEPTED All other cases.

Note that if for an event specification ‘R j k’ the
channel is empty, there is no event, there is no output,
and the current event number is not incremented.

paxos.txt 10/15/08 09:26:34 5 of 7

In general, items in an output line are to be separated
by a single space character, except there is no space
before a ‘:’. There should be no other whitespace
characters in any output line. You may assume the test
case name input line is property formatted, and you
should just copy it to the output.

At the end of each test case print one empty line.
This will appear before the name of the next test case,
or before the end of the output file.

Example Input
------- -----

ERRORLESS CASE
3
N 1 C
R 1 2
R 1 2
R 1 3
R 2 1
R 3 1
R 1 2
R 1 3
R 2 1
R 3 1
R 1 2
R 1 3
E
ONE FAILURE CASE
3
N 1 C
R 1 2
R 1 3
N 2 B
R 2 1
R 3 1
R 2 3
R 1 2
R 3 2
R 2 1
R 2 3
R 1 2
R 3 2
R 2 1
R 2 3
E

paxos.txt 10/15/08 09:26:34 6 of 7

Example Output
------- ------

ERRORLESS CASE
1: NEW INSTANCE 1 C
2: 1 2 N 1 ACCEPTED
3: 1 3 N 1 ACCEPTED
4: 2 1 A 1 X -1 ACCEPTED
5: 3 1 A 1 X -1 ACCEPTED
6: 1 2 P 1 C COMMITTING
7: 1 3 P 1 C ACCEPTED
8: 2 1 Q 1 ACCEPTED
9: 3 1 Q 1 ACCEPTED
10: 1 2 F 1 ACCEPTED
11: 1 3 F 1 ACCEPTED

ONE FAILURE CASE
1: NEW INSTANCE 1 C
2: 1 2 N 1 ACCEPTED
3: 1 3 N 1 ACCEPTED
4: NEW INSTANCE 2 B
5: 2 1 N 4 ACCEPTED
6: 3 1 A 1 X -1 IGNORED
7: 2 3 N 4 ACCEPTED
8: 1 2 A 4 X -1 ACCEPTED
9: 3 2 A 4 X -1 ACCEPTED
10: 2 1 P 4 B COMMITTING
11: 2 3 P 4 B ACCEPTED
12: 1 2 Q 4 ACCEPTED
13: 3 2 Q 4 ACCEPTED
14: 2 1 F 4 ACCEPTED
15: 2 3 F 4 ACCEPTED

[The last output line is blank.]

Remarks

A non-distributed reliable system can be made from a
computer and a disk. The computer runs instances of an
algorithm which makes decisions. To make a decision,
an instance first proposes it, then writes it to disk,
then declares the decision final. If the computer
crashes, a new instance of the algorithm is started,
which begins by reading the disk to find out all the
previously proposed decisions. Since it does not know
the extent to which these have been acted on, it must
assume each of these proposed decisions is final.

The disk is referred to as ‘stable storage’, because it
survives crashes and provides reliability.

The PAXOS algorithm uses the set of processes to imple-
ment stable storage (without any disks). The proposal
(P) messages write the proposed decision to stable
storage (the set of processes), and the proposal acknow-
ledgment (Q) messages confirm that the decision has been
written. In the non-distributed case the proposed deci-
sion has been successfully written to stable storage
when its last bit has been successfully copied to disk.
In the PAXOS case the proposed decision has been
successfully written to stable storage when the m-1’st
slave which will not ignore the proposal’s P message has
received the P message. At this point any subsequent
instance will read the proposed decision. So at this
point the proposed decision is ‘committed’. The master
knows it has successfully written stable storage when it
receives the m-1’st Q message.

paxos.txt 10/15/08 09:26:34 7 of 7

The new instance (N) messages and their acknowledgment
(A) messages correspond to reading stable storage. The
master knows it has successfully read stable storage
when it receives the m-1’st A message, and any proposed
decision read is that associated with the most recent
instance known to any of the slaves that sent the A
messages. Because two majority sets of processes must
overlap, any committed proposed decision becomes known
to the master. Here we are using the fact that if a
committed proposed decision is overwritten by a new
proposed decision, the new proposed decision must be the
SAME as the old proposed decision, by step (c) of the
algorithm.

One can formalize all this in an inductive mathematical
proof that using PAXOS, once a proposed decision is
committed by an instance no future instance can propose
any other decision.

The analogy we have drawn between the non-distributed
and distributed cases is not precise. For example, in
the distributed case several instances can run simultan-
eously (in DIFFERENT processes), and a proposed decision
that is never committed can end up being read as the
latest proposed decision by a subsequent algorithm
instance.

File: paxos.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Wed Oct 15 09:25:31 EDT 2008

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2008/10/15 13:26:34 $
 $RCSfile: paxos.txt,v $
 $Revision: 1.10 $

twolegs.txt 10/15/08 03:08:22 1 of 2
The Two Legged Maze

A two legged maze is a board of NxN squares, with each
square labeled by a single lower case letter. The
problem is to go by a path from a start square to a goal
square. The path is a sequence of horizontal and verti-
cal moves to adjacent squares. The path is divided into
two parts, the ‘first leg’ followed by the ‘second leg’.
Each leg is a sequence of moves. In the first leg all
moves must be from a square labeled X to a square
labeled Y where Y follows X in the alphabet, or in
short, X<Y. In the second leg all moves must be from X
to Y where Y precedes X in the alphabet, or X>Y. Either
leg can have zero moves.

The board columns are numbered 1, 2, ..., N and the
board rows are numbered 1, 2, ..., N. A square has
coordinates (r,c) where r is the square’s row number and
c is its column number, (1,1) is the upper left corner,
and (N,N) is the lower right corner. The start square
is (sr,sc) and the goal square is (gr,gc).

Diagonal moves are NOT allowed.

Input

For each of several test cases, a single line containing
the 5 numbers

 N sr sc gr gc

where 1 <= N <= 50, followed by N lines each containing
just N lower case letters. These lines are the rows of
the board, with row 1 first and row N last. The N lower
case letters on a line are the labels of the squares in
the line’s row, with the first letter in the line being
for column 1 and the last being for column N.

An end of file terminates the input.

Output

For each case, a single line containing nothing but
the minimum number of moves required by any path from
the start to the goal. Or if there is no such path,
then the line contains just the word ‘impossible’.

Example Input
------- -----

5 1 1 5 5
abcde
fghij
klmno
pqrst
uvwxy
5 1 2 4 5
abken
ywxyz
abekw
yxieb
pqude
5 4 2 5 5
abkzn
ywxyx
abekw
ymief
pqude

twolegs.txt 10/15/08 03:08:22 2 of 2

Example Output
------- ------

8
6
impossible

File: twolegs.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Wed Oct 15 03:08:09 EDT 2008

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2008/10/15 07:08:22 $
 $RCSfile: twolegs.txt,v $
 $Revision: 1.4 $

supercounter.txt 10/15/08 09:27:26 1 of 1
Superstring Counter
----------- -------

A superstring of a set of strings is a string containing
every member of the set (possibly with overlapping) as a
substring. You have been asked to find the number of
superstrings with a given length of a given set of
substrings. All strings consist of lower case letters.

Input

For each test case, one line containing just ‘n m’,
where n is the length of the superstring and m is the
number of substrings to be included in it, followed by
m lines, each containing nothing but one substring.
1 <= m <= 10, 1 <= n <= 40. Substrings contain only
lower case letters. The input ends with an end of file.

Output

For each test case, one line containing the number of
superstrings containing just n lower case letters. The
input will be such that the output will be less than
2^31.

Sample Input
------ -----

4 2
ab
cd
3 1
aa

Sample Output
------ ------

2
51

File: supercounter.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Wed Oct 15 09:27:16 EDT 2008

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2008/10/15 13:27:26 $
 $RCSfile: supercounter.txt,v $
 $Revision: 1.5 $

convexhull.txt 10/15/08 09:31:45 1 of 2
3D Convex Hull
-- ------ ----

You are given a large number of points in 3-space and
must find the convex hull of these points.

Input

For each test case, one line containing the name of the
test case, followed by a line containing just ‘n’, the
number of points you are given, followed by n lines each
containing ‘x y z’, the coordinates of one of the
points. The points are numbered 1 through n in the
order that they appear in the input file.

The xyz coordinates are all integers in the range from
-1000 through +1000. 4 <= n <= 10,000.

The input ends with an end of file.

Output

For each test case, one line containing just the name
of the test case, followed by a line containing just
‘m’, the number of edges in the convex hull, followed by
m lines, each containing ‘i j’, where i and j are the
numbers of the points that are the vertices of one of
these edges. The input will be such that 4 <= m <= 100.
An edge, by definition, is the edge of a face of the
convex hull, and such a face can be any convex polygon.

To simplify the code, the input will be such that each
face is a triangle and all points on the convex hull
will be vertices of faces. Thus no point will be in the
interior of a face or on the line between two other
points that are on the hull.

All the hull face edges must be output in SORTED order.
For an edge output as ‘i j’, i < j is required. Edges
with lower i values must be output first, and among
edges with the same i values, those with lower j values
must be output first.

Sample Input
------ -----

TETRAHEDRON IN A CUBE
4
0 0 0
1 1 0
0 1 1
1 0 1
OCTAHEDRON
9
0 0 0
2 0 0
0 2 0
2 2 0
1 1 -2
1 1 2
1 1 -1
1 1 0
1 1 1

convexhull.txt 10/15/08 09:31:45 2 of 2

Sample Output
------ ------

TETRAHEDRON IN A CUBE
6
1 2
1 3
1 4
2 3
2 4
3 4
OCTAHEDRON
12
1 2
1 3
1 5
1 6
2 4
2 5
2 6
3 4
3 5
3 6
4 5
4 6

File: convexhull.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Wed Oct 15 09:30:27 EDT 2008

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2008/10/15 13:31:45 $
 $RCSfile: convexhull.txt,v $
 $Revision: 1.7 $

