
demos 10/07/07 07:13:40 1 of 1
Demos Index Sun Oct 07 07:13:39 AM EDT 2007

Demonstration Problem:

 demos/count
 Count characters, words, and lines in text.
 Solutions are included with this demonstration
 problem. The files available are:

 demos/count/Makefile Commented Makefile.
 demos/count/README Usage Info.
 demos/count/count.in Judges input.
 demos/count/count.test Judges output.
 demos/count/count.txt Problem statement.
 demos/count/count1.c Solution in C.
 demos/count/count1.cc Solution in C++.
 demos/count/count1.java Solution in JAVA.
 demos/count/count1.lsp Solution in COMMONLISP.

Java IO Demo:
---- -- ----

 demos/javaio
 Demo of JAVA IO. The files available are:

 demos/javaio/javaio.java Demo code.
 demos/javaio/Makefile Makefile.
 demos/javaio/javaio.in Test input.
 demos/javaio/javaio.test Test output.

README 04/14/06 10:27:55 1 of 2
Count Demo README Fri Apr 14 10:28:05 EDT 2006

The files in this demo directory are:

 public/count/Makefile Commented Makefile.
 public/count/README Usage Info.
 public/count/count.in Judges input.
 public/count/count.test Judges output.
 public/count/count.txt Problem description.
 public/count/count1.c Solution in C.
 public/count/count1.cc Solution in C++.
 public/count/count1.java Solution in JAVA.
 public/count/count1.lsp Solution in COMMONLISP.

There may be other files used exclusively by the judge,
such as .rc, .jin, and .jtest files.

The Makefile is commented, as opposed to most problem
Makefiles. For a non-demo problem you are only given
the .txt file and the Makefile.

To run the demo (under UNIX), first

 cp count1.yy count.yy

for exactly ONE of yy = c, cc, java, or lsp. Then

 make

To check that the output is correct

 diff count.out count.test

Then to submit the demo

 make submit

To see what debugging print commands might look like,
try
 make debug

If you want to edit the solution you chose, you may
first need to

 chmod u+w count.yy

(for the right yy), to make the file writable.

You should try introducing an error in the file and
resubmitting to see the response. If you are in a
contest that permits ‘in-submit’ and ‘inout-submit’,
try

 make in-submit

and then

 make inout-submit

with a source file that has an error which makes it
produce incorrect output.

Read the Makefile for more information.

If you have a non-UNIX system, you can submit the file
count1.yy directly by sending email to the judge with
subject ‘submit count.yy’ (note there is no ‘1’ here)
and body equal to the file count1.yy (here there is a
‘1’). You may run count1.yy using your own system with
count.in as the standard input in order to generate
count.out.

Although in this directory the problem description is
in a .txt file, in other problem directories the problem
description may be in a .html, .htm, or .ps (postscript)
file.

README 04/14/06 10:27:55 2 of 2

File: README
Authors: walton@deas.harvard.edu
Date: see above

The authors have placed this file in the public
domain; they make no warranty and accept no liability
for this file.

RCS Info (may not be true date or author):

 $Author: hc3 $
 $Date: 2006/04/14 14:27:55 $
 $RCSfile: README,v $
 $Revision: 1.10 $

Makefile 05/06/06 01:19:22 1 of 3
Makefile for the ‘count’ Demonstration Problem
#
File: Makefile
Date: Sat May 6 01:19:58 EDT 2006
#
Exactly ONE of the four files count.c (C), count.cc
(C++), count.java (Java), or count.lsp (Commonlisp)
should exist.
#
UNIX commands supported by this Makefile:
#
make Same as ‘make count.out’.
#
make count Makes the binary program file
‘count’ by running gcc on
count.c, or g++ on count.cc,
or javac on count.java,
or hpcm_clisp on count.lsp,
depending upon which of count.c,
count.cc, count.java, or
count.lsp exist. Also makes a
shell script named ‘count’ for
count.java and count.lsp files.
Does nothing if ‘count’ is more
up to date than count.c,
count.cc, count.java, or
count.lsp.
#
make count.out Makes ‘count’ as above and
then runs it with no arguments
and with the standard input
coming from the file count.in.
Puts the standard output in the
file count.out, and then copies
that to the screen. Does noth-
ing, however, if count.out is
more recent than both count.in
and count.
#

make count.debug Ditto but runs ‘count debug’
(with the one argument ‘debug’)
instead of ‘count’ and puts the
output in count.debug instead
of count.out.
#
make debug Same as ‘make count.debug’.

make submit Makes ‘count.out’ just to be
sure that nothing crashes, and
then e-mails count.c, count.cc,
count.java, or count.lsp to the
judges.
#
make in-submit Ditto, but requests that if
the score is ‘Incorrect Output’
or ‘Formatting Error’, the
judge’s input for the failed
test case will be returned in
e-mail to the contestant.
#
make inout-submit
Ditto but requests both the
judge’s input and the judge’s
output for the test case.
#
make solution-submit
Like ‘make submit’ but requests
that if the score is ‘Completely
Correct’ the judge’s solution
will be returned in e-mail to
the contestant.

make clean Removes ‘count’, count.out, and
other intermediate files that
might exist, such as ‘core’,
‘count.class’, or count.fas.

#

Makefile 05/06/06 01:19:22 2 of 3

.SUFFIXES:

.SUFFIXES: .c .cc .java .lsp

default: count.out

.c:
 rm -f $* core core.[0-9]*
 gcc -g -o $* $*.c -lm

.cc:
 rm -f $* core core.[0-9]*
 g++ -g -o $* $*.cc -lm

.java:
 rm -f $* *.class core core.[0-9]*
 javac -g $*.java
 echo >$* ’#!/bin/sh’
 echo >>$* "exec ‘which java‘ $* \$$*"
 chmod a+r *.class
 chmod a+rx $*

.lsp:
 rm -f $* $*.fas $*.lib core core.[0-9]*
 hpcm_clisp -c $*.lsp
 echo >$* ’#!/bin/sh’
 echo >>$* \
 "exec ‘hpcm_clisp -which‘ -I $*.fas \$$*"
 chmod a+r $*.fas
 chmod a+rx $*
#

hpcm_sandbox below may execute ‘count’ as a special
unprivileged user named ‘sandbox’, so various files
must be ‘a+x’ or ‘a+r’. ‘hpcm_clisp -which’ returns
in the judging account the name of a version of the
hpcm_clisp program that can be run in the sandbox.

count.out: count count.in
 rm -f count.out core core.[0-9]*
 chmod a+x . count
 hpcm_sandbox -cputime 60 \
 -datasize 4m \
 -stacksize 4m \
 -filesize 50k \
 -tee count.out \
 count \
 <count.in

count.debug: count count.in
 rm -f count.debug core core.[0-9]*
 chmod a+x . count
 hpcm_sandbox -cputime 60 \
 -datasize 4m \
 -stacksize 4m \
 -filesize 4m \
 -tee count.debug \
 count debug \
 <count.in

#

Makefile 05/06/06 01:19:22 3 of 3

debug: count.debug

submit: count.out
 hpcm_submit count

in-submit: count.out
 hpcm_submit -in count

inout-submit: count.out
 hpcm_submit -inout count

solution-submit: count.out
 hpcm_submit -solution count

clean:
 rm -f count *.class core core.[0-9]* \
 count.out count.debug count.jout \
 count.fas count.lib

Author: walton@deas.harvard.edu
#
The authors have placed this file in the public
domain; they make no warranty and accept no liability
for this file.
#
RCS Info (may not be true date or author):
#
$Author: hc3 $
$Date: 2006/05/06 05:19:22 $
$RCSfile: Makefile,v $
$Revision: 1.31 $

count.in 09/01/00 06:36:20 1 of 1
This is a good paragraph to start with.

And to continue in a bit more
complicated
vein,
this is a good paragraph.

But
 the
 ultimate
 in
 poetically
 possible
 paragraphs
 is
 this,
 or
 is
 it!

Oh Well.

count.test 09/03/00 06:19:20 1 of 1
Paragraph 1: 1 lines, 8 words, 39 characters.
Paragraph 2: 4 lines, 14 words, 70 characters.
Paragraph 3: 12 lines, 12 words, 124 characters.
Paragraph 4: 1 lines, 2 words, 8 characters.

count.txt 09/01/00 06:36:21 1 of 1
Paragraph Character/Word/Line Counting.

The Itsy Bitsy Counting Company has a job counting the
number of characters, words, and lines in a paragraph.

A paragraph is a sequence of 1 or more non-blank lines.

All the characters of a line count EXCEPT the trailing
new line.

A word is a sequence of non-space (non ’ ’) characters
on a line, and is separated from other words on the
same line by sequences of space (’ ’) characters.

The only whitespace characters in the input are space
and newline (’ ’ and ’\n’). No line has more than
100 characters in it, not counting the new line at
the end.

Paragraphs are separated by one or more blank lines.
A blank line may have whitespace characters, but
nothing else.

The paragraphs in the input are numbered 1, 2,
The program reads its standard input, and for each
paragraph in that input, prints the paragraph
number and the counts, in exactly the following format:

Paragraph #: # lines, # words, # characters.

where each # denotes 1 or more decimal digits.

Example Input:
------- -----

This is a good paragraph to start with.

And to continue in a bit more
complicated
vein,
this is a good paragraph.

But
 the
 ultimate
 in
 poetically
 possible
 paragraphs
 is
 this,
 or
 is
 it!

Oh Well.

Example Output:
------- ------

Paragraph 1: 1 lines, 8 words, 39 characters.
Paragraph 2: 4 lines, 14 words, 70 characters.
Paragraph 3: 12 lines, 12 words, 124 characters.
Paragraph 4: 1 lines, 2 words, 8 characters.

count1.c 04/11/06 08:13:22 1 of 1
#include <stdio.h>

#define dprintf if (debug) printf
int debug;

main (int argc)
{
 debug = (argc > 1);

 int paragraph = 1;

 while (1)
 {
 int characters = 0;
 int words = 0;
 int lines = 0;

 char buffer [102];

 int at_end_of_file = 1;

 while (fgets (buffer, sizeof (buffer),
 stdin))
 {
 char * cp = buffer;

 at_end_of_file = 0;

 while (* cp == ’ ’) ++ cp;

 if (* cp == 0 || * cp == ’\n’) break;

 ++ lines;

 do
 {
 ++ words;
 while (* cp != ’ ’ &&
 * cp != ’\n’ &&
 * cp != 0) ++ cp;
 while (* cp == ’ ’) ++ cp;
 } while (* cp != 0 && * cp != ’\n’);

 characters += (cp - buffer);

 dprintf ("+ %s", buffer);
 dprintf (". %d %d %d\n",
 characters, words, lines);
 }

 if (at_end_of_file) break;

 if (lines > 0)
 {
 printf ("Paragraph %d: %d lines, %d words,"
 " %d characters.\n", paragraph,
 lines, words, characters);

 ++ paragraph;
 }
 }

 return 1; /* This line can be omitted.
 * It is a test that make count.out
 * works even if count returns an
 * error code.
 */
}

count1.cc 04/11/06 08:07:31 1 of 1
#include <iostream>
using namespace std;

#define dout if (debug) cout
bool debug;

main(int argc)
{
 debug = (argc > 1);

 int paragraph = 1;

 while (! cin.eof())
 {
 int characters = 0;
 int words = 0;
 int lines = 0;

 char buffer [101];

 while
 (cin.getline (buffer, sizeof (buffer)),
 ! cin.eof())
 {
 char * cp = buffer;
 while (* cp == ’ ’) ++ cp;

 if (* cp == 0) break;

 ++ lines;

 do
 {
 ++ words;
 while (* cp != ’ ’ && * cp) ++ cp;
 while (* cp == ’ ’) ++ cp;
 } while (* cp);

 characters += (cp - buffer);
 dout << "+ " << buffer << endl;
 dout << ". " << characters
 << " " << words
 << " " << lines << endl;
 }

 if (lines > 0)
 {
 cout << "Paragraph " << paragraph << ": "
 << lines << " lines, "
 << words << " words, "
 << characters << " characters."
 << endl;

 ++ paragraph;
 }
 }

 return 1; // This line can be omitted.
 // It is a test that make count.out
 // works even if count returns an
 // error code.
}

count1.java 05/04/06 10:06:33 1 of 2
// Count Demo Program: JAVA Version
//
// File: count.java [After renaming]
// Actual-File: count1.java [Before renaming]
// Author: Bob Walton <walton@deas.harvard.edu>
// Date: Thu May 4 10:07:11 EDT 2006
//
// The authors have placed this program in the public
// domain; they make no warranty and accept no liability
// for this program.
//
// RCS Info (may not be true date or author):
//
// $Author: hc3 $
// $Date: 2006/05/04 14:06:33 $
// $RCSfile: count1.java,v $
// $Revision: 1.7 $

import java.io.*;
import java.util.StringTokenizer;

public class count {

 public static boolean debug;

 public static void dprintln (String s)
 {
 if (debug) System.out.println (s);
 }

 public static void main (String[] args)
 throws IOException
 {

 debug = (args.length > 0);

 BufferedReader reader
 = new BufferedReader
 (new InputStreamReader
 (System.in));

 // Loop through paragraphs.
 //
 int paragraph = 1;

 boolean eof_seen = false;
 while (! eof_seen)
 {
 int characters = 0;
 int words = 0;
 int lines = 0;

 while (true)
 {
 String line = reader.readLine();
 if (line == null)
 {
 // readLine returns null on EOF.
 //
 eof_seen = true;
 break;
 }

 StringTokenizer tokenizer
 = new StringTokenizer (line);

 // Break on blank line.
 //
 if (! tokenizer.hasMoreTokens())
 break;

 ++ lines;

 // Count words in line.
 //
 while (tokenizer.hasMoreTokens())
 {
 ++ words;
 tokenizer.nextToken();
 }

 // Count characters in line.
 //
 characters += line.length();

 dprintln ("+ " + line);
 dprintln (". " + characters +
 " " + words +
 " " + lines);

count1.java 05/04/06 10:06:33 2 of 2
 }

 // Ignore blank ‘paragraphs’.
 //
 if (lines > 0)
 {
 // Print paragraph output.
 //
 System.out.println
 ("Paragraph " + paragraph + ": "
 + lines + " lines, "
 + words + " words, "
 + characters + " characters."
);

 ++ paragraph;
 }
 }
 }
}

count1.lsp 04/11/06 12:26:56 1 of 1
(defvar debug)
(defun dformat (&rest r)
 (if debug (apply #’format t r)))

(defun main (&rest r)
 (setq debug r)
 (read-a-paragraph 1))

;; Counts are expressed as a triple:
;;
;; (line-count word-count character-count)

(defvar blank-line ’(1 0 0))
(defvar end-of-file ’(0 0 0))

(defun read-a-paragraph (paragraph)
 (let ((counts (read-a-line)))
 (cond
 ((equal counts blank-line)
 (read-a-paragraph paragraph))
 ((not (equal counts end-of-file))
 (read-rest-of-paragraph counts paragraph)))))

(defun read-rest-of-paragraph (counts paragraph)
 (apply #’dformat ". ˜A ˜A ˜A˜%" (reverse counts))
 (let ((line-counts (read-a-line)))
 (cond ((or (equal line-counts blank-line)
 (equal line-counts end-of-file))
 (format t "Paragraph ˜S" paragraph)
 (format t ": ˜S lines" (first counts))
 (format t ", ˜S words" (second counts))
 (format t ", ˜S characters.˜%"
 (third counts))
 (if (equal line-counts blank-line)
 (read-a-paragraph (1+ paragraph))))
 (t
 (read-rest-of-paragraph
 (mapcar #’+ line-counts counts)
 paragraph)))))

(defun read-a-line ()
 (let ((line (read-line t nil ’eof)))
 (cond

 ((eq line ’eof) ’(0 0 0))
 (t (if (/= (length line) 0)
 (dformat "+ ˜A˜%" line))
 ‘(1 ,(read-a-word line 0 (length line) 0)
 ,(length line))))))

(defun read-a-word (line index length count)
 (cond
 ((>= index length) count)
 ((char= #\Space (aref line index))
 (read-a-word line (1+ index) length count))
 (t
 (read-rest-of-word line (1+ index) length count))))

(defun read-rest-of-word (line index length count)
 (cond
 ((>= index length) (1+ count))
 ((char= #\Space (aref line index))
 (read-a-word line (1+ index) length (1+ count)))
 (t
 (read-rest-of-word line (1+ index) length count))))

javaio.java 02/12/04 23:06:10 1 of 3
// JAVA IO Demo
//
// File: javaio.java
// Author: Bob Walton <walton@deas.harvard.edu>
// Date: Thu Feb 12 23:05:12 EST 2004
//
// The authors have placed this program in the public
// domain; they make no warranty and accept no liability
// for this program.
//
// RCS Info (may not be true date or author):
//
// $Author: hc3 $
// $Date: 2004/02/13 04:06:10 $
// $RCSfile: javaio.java,v $
// $Revision: 1.4 $

import java.io.*;
import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.Locale;

// This program reads input, parses it into tokens,
// prints info about the tokens, and prints a summary
// at the end. The program illustrates use of the
// StreamTokenizer and DecimalFormat classes.

public class javaio {

 public static void main (String[] args)
 throws IOException {

 // Set up the StreamTokenizer.
 //
 Reader reader
 = new BufferedReader
 (new InputStreamReader
 (System.in));
 StreamTokenizer tokenizer
 = new StreamTokenizer (reader);

 // Set to read any string of non-whitespace
 // characters as a word.
 //

 tokenizer.resetSyntax();
 tokenizer.wordChars (’!’, ’\u00FF’);
 tokenizer.whitespaceChars (’\u0000’, ’ ’);
 //
 // You must not set the same character to be
 // both a word character and a whitespace
 // character.

 // Set to read end of line as a token.
 // If this function is not called, end of
 // line is treated as a simple space character.
 //
 tokenizer.eolIsSignificant (true);

 // Read numbers as tokens. If not called,
 // numbers are not handled specially.
 //
 // WARNING: This makes isolated ’.’s input as
 // the the number 0, while ‘-’s may input as
 // a separator.
 //
 tokenizer.parseNumbers();

 // Parse certain characters as 1-character
 // tokens.
 //
 tokenizer.ordinaryChar (’,’);
 tokenizer.ordinaryChar (’(’);
 tokenizer.ordinaryChar (’)’);

 // Set up number formatter. Note that it is
 // important in ACM programming contests to
 // insist on an ENGLISH formatter.
 //
 // Also, do NOT put commas in the output.
 //
 DecimalFormat formatter = (DecimalFormat)
 NumberFormat.getInstance (Locale.ENGLISH);
 formatter.applyPattern ("#0.00");

 // Process a paragraph. Paragraphs are
 // separated by blank lines.
 //

javaio.java 02/12/04 23:06:10 2 of 3
 int paragraph = 1;
 boolean eof_seen = false;
 while (! eof_seen)
 {
 int numbers = 0;
 int words = 0;
 int separators = 0;
 int lines = 0;

 boolean eop_seen = false;
 boolean line_is_blank = true;

 while (! eop_seen && ! eof_seen)
 {
 tokenizer.nextToken();
 switch (tokenizer.ttype)
 {

 case StreamTokenizer.TT_EOF:

 if (line_is_blank)
 {
 eof_seen = true;
 break;
 } else
 throw new RuntimeException
 ("EOF in bad place");

 case StreamTokenizer.TT_EOL:

 if (! line_is_blank)
 ++ lines;
 else if (lines != 0)
 eop_seen = true;
 line_is_blank = true;
 break;

 case StreamTokenizer.TT_NUMBER:

 System.out.print ("NUMBER ");
 System.out.print (tokenizer.nval);
 System.out.print (" = ");
 System.out.print
 (formatter.format

 (tokenizer.nval));
 System.out.println();
 line_is_blank = false;
 ++ numbers;
 break;

 case StreamTokenizer.TT_WORD:
 System.out.print ("WORD ");
 System.out.print (tokenizer.sval);
 System.out.println();
 line_is_blank = false;
 ++ words;
 break;

 case ’(’:
 case ’)’:
 case ’,’:
 case ’-’:
 System.out.print ("SEPARATOR ");
 System.out.print
 ((char) tokenizer.ttype);
 System.out.println();
 line_is_blank = false;
 ++ separators;
 break;

 default:
 throw new RuntimeException
 ("Bad token type "
 + tokenizer.ttype);
 }
 }

 if (lines > 0)
 {
 System.out.println
 ("Paragraph " + paragraph + ":");

 System.out.println
 (" " + lines + " lines, "
 + words + " words, "
 + numbers + " numbers, "
 + separators
 + " separators.");

javaio.java 02/12/04 23:06:10 3 of 3

 double m =
 ((double) 100.0)
 / (words + numbers + separators);

 System.out.println
 (" "
 + formatter.format
 (m * words)
 + "% words, "
 + formatter.format
 (m * numbers)
 + "% numbers, "
 + formatter.format
 (m * separators)
 + "% separators.");

 ++ paragraph;
 }
 }
 }
}

Makefile 05/06/06 01:28:40 1 of 2
Makefile for JAVA IO Demo
#
File: Makefile
Date: Sat May 6 01:27:00 EDT 2006
#
See demonstration Makefile for documentation.
#
The program for this problem is named:

P = javaio

.SUFFIXES:

.SUFFIXES: .c .cc .java .lsp

default: $P.out

.c:
 rm -f $* core core.[0-9]*
 gcc -g -o $* $*.c -lm

.cc:
 rm -f $* core core.[0-9]*
 g++ -g -o $* $*.cc -lm

.java:
 rm -f $* *.class core core.[0-9]*
 javac -g $*.java
 echo >$* ’#!/bin/sh’
 echo >>$* "exec ‘which java‘ $* \$$*"
 chmod a+r *.class
 chmod a+rx $*

#

.lsp:
 rm -f $* $*.fas $*.lib core core.[0-9]*
 hpcm_clisp -c $*.lsp
 echo >$* ’#!/bin/sh’
 echo >>$* \
 "exec ‘hpcm_clisp -which‘ -I $*.fas \$$*"
 chmod a+r $*.fas
 chmod a+rx $*

$P.out: $P $P.in
 rm -f $P.out core core.[0-9]*
 chmod a+x . $P
 hpcm_sandbox -cputime 60 \
 -datasize 4m \
 -stacksize 4m \
 -filesize 50k \
 -tee $P.out \
 $P \
 <$P.in

$P.debug: $P $P.in
 rm -f $P.debug core core.[0-9]*
 chmod a+x . $P
 hpcm_sandbox -cputime 60 \
 -datasize 4m \
 -stacksize 4m \
 -filesize 4m \
 -tee $P.debug \
 $P debug \
 <$P.in

debug: $P.debug

submit: $P.out
 hpcm_submit $P

in-submit: $P.out
 hpcm_submit -in $P

inout-submit: $P.out
 hpcm_submit -inout $P

solution-submit: $P.out

Makefile 05/06/06 01:28:40 2 of 2
 hpcm_submit -solution $P

clean:
 rm -f $P *.class core core.[0-9]* \
 *.out *.debug *.fout *.jout *.jfout \
 $P.fas $P.lib make_$P_*input

#

Author: walton@deas.harvard.edu
#
The authors have placed this file in the public
domain; they make no warranty and accept no liability
for this file.
#
RCS Info (may not be true date or author):
#
$Author: hc3 $
$Date: 2006/05/06 05:28:40 $
$RCSfile: Makefile,v $
$Revision: 1.3 $

javaio.in 11/01/02 06:34:20 1 of 1
This is a nice sentence.
And another.

These are some numbers:
 1 2 3 4 5 6 7 8 9 10
 8.4 123456789

These are some strange cases:
 . - a-b -a -3.0a

How about some separators, (a good thought).
Well, not everything that should be is a separator.

javaio.test 11/01/02 06:34:20 1 of 1
WORD This
WORD is
WORD a
WORD nice
WORD sentence.
WORD And
WORD another.
Paragraph 1:
 2 lines, 7 words, 0 numbers, 0 separators.
 100.00% words, 0.00% numbers, 0.00% separators.
WORD These
WORD are
WORD some
WORD numbers:
NUMBER 1.0 = 1.00
NUMBER 2.0 = 2.00
NUMBER 3.0 = 3.00
NUMBER 4.0 = 4.00
NUMBER 5.0 = 5.00
NUMBER 6.0 = 6.00
NUMBER 7.0 = 7.00
NUMBER 8.0 = 8.00
NUMBER 9.0 = 9.00
NUMBER 10.0 = 10.00
NUMBER 8.4 = 8.40
NUMBER 1.23456789E8 = 123456789.00
Paragraph 2:
 3 lines, 4 words, 12 numbers, 0 separators.
 25.00% words, 75.00% numbers, 0.00% separators.
WORD These
WORD are
WORD some
WORD strange
WORD cases:
NUMBER 0.0 = 0.00
SEPARATOR -
WORD a-b
SEPARATOR -
WORD a
NUMBER -3.0 = -3.00
WORD a
Paragraph 3:
 2 lines, 8 words, 2 numbers, 2 separators.
 66.67% words, 16.67% numbers, 16.67% separators.

WORD How
WORD about
WORD some
WORD separators
SEPARATOR ,
SEPARATOR (
WORD a
WORD good
WORD thought
SEPARATOR)
NUMBER 0.0 = 0.00
WORD Well
SEPARATOR ,
WORD not
WORD everything
WORD that
WORD should
WORD be
WORD is
WORD a
WORD separator.
Paragraph 4:
 2 lines, 16 words, 1 numbers, 4 separators.
 76.19% words, 4.76% numbers, 19.05% separators.

