pr obl ens 10/ 10/ 07

13: 03: 30

1 of 1

Probl emrs | ndex Wed Cct 10 01:03: 30 PM EDT 2007

BOSPRE 2007 Probl ens.

The problenms are in approximate order of difficulty,
easiest first.

probl ens/ piglatin
Hi gh school keeps com ng back

probl ems/ anti que
Did the Romans have it right?

pr obl ens/ shoot ermmup
Alittle intelligence goes a | ong way.

pr obl ens/ t x0Or
Antique conputers fascinate sone people.

pr obl ens/ bendi ng
Sea legs for the | and decks.

probl enms/ cl i ques
Net wor ki ng has its clusters.

pi gl atin.txt

10/ 10/ 07 03:33:35

1 of 2

Pig Latin

You have been asked to translate English words to Pig
Latin. The translation is very sinple: take all the
consonants at the beginning of the word, nove themto
the end, and add ‘ay’. |If there are no consonants at
the beginning of the word, just add ‘ay’ to the end.
The consonants are all letters except ‘a, ‘e, ‘i’,
‘o', ‘u, and ‘'y’. Note that ‘y’ is NOT a consonant
for our purposes.

A sequence of lines each containing an English word.
There are no spaces in any line. Wrds will contain
only | ower case letters.

The input ends with an end of file.

For each English word, one |ine containing nothing but
the translation of the word into Pig Latin.

Exanpl e | nput

you
hel p

nme

to
under st and
prg

latin

this

hour

Exanpl e Qut put

youay
el phay

emay

ot ay
under st anday
I gpay
atinl ay

i st hay

our hay

Note: Actual Pig Latin noves only initial consonant
SQUNDS, and therefore does not nove unsounded initia
consonants. Thus ‘hour’ woul d becone ‘houray’ in
actual Pig Latin. There are also variants which put
‘way’ or ‘yay’ or sone such at the end of words that
begin with a vowel sound.

pi gl atin.txt 10/ 10/ 07 03:33:35 2 of 2

File: pi gl atin.txt
Aut hor : Bob Wal t on <wal t on@leas. harvard. edu>
Dat e: Wed Oct 10 03:31: 33 EDT 2007

The aut hors have placed this file in the public domain
they make no warranty and accept no liability for this

file.

RCS Info (may not be true date or author):

$Aut hor: walton $

$Dat e: 2007/10/10 07:33:35 $
$RCSfile: piglatin.txt,v $
$Revision: 1.3 $

anti que. t xt

10/ 10/ 07 12:05: 57

Antique Fornmatting

You have been asked to wite prototype a formatting
function. As a test your programis to read a fornat-
ting string and sone argunents, and apply the formatting
string to the argunents.

You boss, however, is a bit on the antique side.

The formatting string is a sequence of comrands, each
of which is a single character. For the prototype
only two comands are inpl enent ed:

w Print the next argument as a string of words.

[Print the next argument as an integer, treating
the formatted i nteger as one word.

However, as we said, your boss is antique. Wrds are to
be printed fromright to left in the output. An integer
is to be printed as a Roman nurmeral word. For this
prototype, each formatting string produces one |ine of
output, with words separated by single spaces, and no

ot her spaces in the |ine.

More specifically, the words in a ‘W string are separa-
ted by single spaces, but these spaces are di scarded
after extracting the words. The order of the words in
the string is the reverse of the order of the words in
the output line. However, the letters within a printed
word are in the same order as the letters within the
word in the string. So word order is reversed but
letter order is not.

Roman nunerals use the following letters to represent
nunbers:

1

5

10
50
100
500
1000

SO0 X<~—

There is no way to represent zero, and you will not be
asked to print zero.

The first 10 nunbers are encoded as:

| 1
N 2

11 3

|V 4 (-1 + 5)
Y% 5

Vi 6

Vi 7

VIl 8

| X 9 (-1 + 10)
X 10

Your boss wants you to sinply encode the digits of the
i nteger using the encodings just given. For the tens
digit you sinply nmake the repl acenents:

I --> X
V-->1L
X-->C

1 of 3

anti que. t xt 10/ 10/ 07 12:05:57 2 of 3
and for the hundreds digit Sanpl e | nput
| -->C
V-->D TEST- 1
X-->M Wi W
we want
You will not be asked to print any nunmber |arger than 4
3999, which allows you to use M MM or MW for the wor ds
t housands digit.
TEST- 2
Note the order that digits are printed in is the sane i W W
for decimal and our Roman nunerals. The thousands digit 2
is printed before the hundreds digit, etc. pl us
2
For exanple, 1999 is printed as MCOMXCl X, and 1849 as equal s
MDCCCXLI X. 4
| nput TEST- 3
----- Wi
a good year is
For each test case, one line containing the name of the 1999
test case, followed by one line containing the fornat-
ting command string, followed by one line for each TEST-4
argunent containing just the argunent, followed by an Wi
enpty line. |Input integers are represented in decinal, anot her year is
and are in the range from1l to 3,999. 1849
I nput ends with an end of file. TEST-5
Wi

For each test case, one line containing the nanme of the
test case, followed by the output line for that test
case.

No output line will be |longer than 80 characters.

the last year of the millenniumis
2000

[Note the last line of the input is enpty.]

anti que. t xt 10/ 10/ 07

12: 05: 57

3 of 3

Sanpl e Qut put

TEST- 1

words |1V want we

TEST- 2

IV equals Il plus Il

TEST- 3

MCMXCI X i s year good a

TEST- 4

MDCCCXLI X i s year anot her

TEST-5

MMis mllenniumthe of year last the

File: antique. t xt
Aut hor : Bob Wl t on <wal t on@leas. harvard. edu>
Dat e: Wed Oct 10 12:05:13 EDT 2007

The aut hors have placed this file in the public domain
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $

$Dat e: 2007/ 10/ 10 16:05:57 $
$RCSfile: antique.txt,v $
$Revision: 1.5 $

shoot ermup. t xt

10/ 10/ 07 12:44:21 1 of

The Land of Shot-Em Up

In the Land of Shot-Em Up conflicts are settled by robot
duels. Each side builds a robot. The two robots are
turned | oose, on their own, in an arena, and whi chever
robot kills (nakes non-functional) the other robot w ns
for its side of the conflict.

You have entered ‘Conflict School’ in the | and of Shot-
Em Up, and are taking a (very) beginning course in
programm ng these robots. Your first assignnent is to
programa sinple robot that will do battle in a virtua
wor | d.

The virtual world is a 10x10 board of squares. The two
robots take turns naking noves. A nove is one of:

novi ng one square in any of the 8 directions
(4 of which are diagonal)

staying put at the robot’s current |ocation

shooting in any of the 8 directions,
whil e staying put at the current |ocation

If you nove of f the edge of the board you die.

If you shoot in a direction the shot hits anything in

its path at the tine of the shot. A robot can absorb

2 hits without ceasing to function, but will die when

it receives a 3'rd hit. However, if you shot in your

| ast move, your shot in this move will have too little
power to hit anything. Your ‘gun’ takes one nove

wi t hout shooting to ‘recharge’

Sonewhat oddly both robots can occupy the sane square
of the board at the sane tinme. |f one of the robots
shoots at such a tinme, the shot never hits the other
robot .

The robots cannot see each other. They can tell, how
ever, when they are hit, and fromwhat direction the
shot that hit them cane.

Your assignnent is to wite a robot program good enough
to beat a given opponent at |east 51 out of 100 tines.
The opponent is a stupid random robot provided by the

t eacher.

Your programis not run directly, but instead is run by
anot her programcalled ‘arena’

Your Programnis | nput

The ‘arena’ programwites |ines that appear in your
program s standard i nput. These |lines, which give you
i nfornmation, have the follow ng format:

Pxy

Prepare to start a new conbat. You are on board
square (x,y). Here x and y are integers, with
0 <= X,y <= 9.

H dx dy

Your opponent shot you in his last nove. The
shot passed through square (x+dx,y+dy) on its
way to hitting you, where you are currently at
square (x,y), dx and dy are integers, dx and
dy are not both 0, and -1 <= dx,dy <= 1.

Your opponent did not shot you in his |ast nove.

shoot ermup. t xt 10/ 10/ 07 12:44:21 2 of
W Your Program s Qutput
Your opponent died in your or his |ast nove,
and you have won. The conbat is over. Your programwites lines to its standard output that
are read by the *arena’ program These |ines announce
L your noves, and have the follow ng formats:
You died in your or your opponents |ast nove, M dx dy
and you have lost. The conbat is over.
Move from your current board square (x,y) to the
D<anyt hi ng> board square (x+dx,y+dy), where dx and dy are
integers and -1 <= dx,dy <= +1. dx =dy =0 is
This line is a debugging instruction for your permtted, and is used to inplenent the ‘staying
program You produce such lines by giving them put’ nove. 0 <= x+dx,y+dy <= 9 is required
as input to the arena program see bel ow (el se you die and | ose).
After inputting a P, N, or Hline, you nust make a mpove S dx dy
by outputting an Mor S line, as specified below After
inputting a Wor L line, you should read another |ine. Shoot. The shot starts at your current square

be a P line or the end of

file. After inputting a D1line, you should do what the
Dline tells you to (you decide what this is), and then
i nput another line. You can output / lines anytine (see
bel ow) wi th debuggi ng infornation.

The next thing input will

There are no superfluous space characters on any i nput
line. The board squares are nunbered (0,0) at the upper
left to (9,9) at the lower right. To make a nmove, you
output an Mor S line (see below), and then you read
aline of input to find out what happened next.

Your reads an end of
file.

program shoul d term nate when it

(x,y) and goes in a straight |line through the
square (x+dx,y+dy) and on to the edge of the
board. Here -1 <= dx,dy <= +1, and dx,dy are
both integers. dx and dy nmay NOT both be O.
You are allowed to shoot off the edge of the
board, e.g., x+dx > 9 is allowed, but you wll
not hit anything.

/ <anyt hi ng>
This is a comrent line. It is output by the
arena program and may be used for debugging.
E.g., you may output / lines in response to
a D line.

You cannot nove and shoot at the same tinme.

shoot ermup. t xt

10/ 10/ 07 12:44: 21

3 of

Arena | nput

The ‘arena’
i nput, which is
commands defi ne

Gn

- <anyt hi ng>

program reads comrands fromits standard

normal Iy the shootemup.in file. These
test cases and debuggi ng options.
Reset the random number generator seed

to n, which nmust be an unsigned integer
with at nost 9 digits. The random

nunber generator is used by your
opponent, and is used to determ ne your
initial position. |f you want your

or to
i nput

opponent to behave differently,
run rounds differently, you nust
a different seed.

Start a new conbat. This line is echoed
to the standard output and serves to
name the conbat. This is the first

i nput |ine describing a conbat,
excepting those combats conducted by an
R conmand.

Make a pair of noves,
one for your opponent.

one for you and

Conti nue the conbat to the end.

Di spl ay the board.
On the board, ‘Y

nmove, ‘O
tinme,
your
ent’s shot if

CGood for debugging.
is you after your |ast
i s your opponent at the sane
+'s mark your shot if you shot in
| ast nove, ‘-’'s mark your oppon-
it shot inits |ast nove.

B1

BO

*<anyt hi ng>

D<anyt hi ng>

Unl ess a conbat
pr ogr ess,

only G R and ‘-’

Turn on display of the board after every
nove of your opponent.

Turn off ditto.

Comrent |ine. Echoed to standard

out put .

This line is sent to your program It
can be used to trigger a debugging
action: see above.

Run a round of n conbats, and print a
round line at the end. The round |ine
has the form

I ROUNDS r WNS w LOSES | ERROCRS e |
wher e
r is the nunber of rounds

w is the nunmber of rounds that
ended in wins for you
| is the nunber of rounds that
ended in |oses for you
e is the nunmber of rounds that
ended when your program rmade
and error (explained in
“*’ lines)
j is the judgnent, which is
‘PASS if 2w > r
“FAIL if 2w <=7
initiated by a ‘-’ command is in
conmands are execut ed.

shoot ermup. t xt 10/ 10/ 07 12:44:21 4 of
Exanpl e Arena | nput If you execute
arena shootemup < xx.in > xx.out
The following can be put in the shootemup.in file. arena shootenmup < xx.out > foo
G 55 Then foo and xx.out should be identical. That is, the
-TEST 1 the second command will repeat the noves made by the
Bl first comuand.
+
+ Simlarly, to replay a gane in the debugger you execute
+
. grep 'A[PHNW.D]’' xx.out > xx.din
R 100 gdb shoot enup
R 100 run < xx.din
R 100

Arena Qut put

The ‘arena’ programwites output to its standard

output, which is normally put in the shootenup.out file.

The ‘arena’ programechos all its input |ines, al

t he

lines it sends to your program and all the lines it

recei ves from your program
your program sends arena and that arena sends your
program are NOT echoed during the R command.

The arena programoutputs |lines beginning with ‘!
contain error nessages, board positions, etc.

As an exception, the lines

t hat

shoot ermup. t xt 10/ 10/ 07 12:44:21 5o0f 5

Exampl e Arena Qut put File: shoot enup. t xt
—————————————————— Aut hor : Bob Wl ton <wal t on@leas. harvard. edu>
Dat e: Wed Cct 10 12:44:10 EDT 2007
G 55
-TEST 1 The aut hors have placed this file in the public domain
P56 they make no warranty and accept no liability for this
file.
RCS Info (may not be true date or author):

$Aut hor: walton $
e $Dat e: 2007/10/10 16:44:21 $
i $RCSfile: shootemup.txt,v $
..... - $Revision: 1.9 $

i e 2 I oS
s

. o

[y

t[Substantial output omitted here]]

R 100
I ROUNDS 100 WNS 91 LOSES 9 ERRCORS 0 PASS
R 100
I ROUNDS 100 WNS 87 LOSES 13 ERRORS 0 PASS
R 100

' ROUNDS 100 WNS 92 LOSES 8 ERRORS 0 PASS

t xOr .t xt 10/ 10/ 07

07: 36: 47 1 of

The TX-0 Rei ncarnate

The TX-0 computer was built in 1955 as an experiment al
conputer to test transistor circuitry, which was new to
conputers at that tine. |Its instructions contained a
2-bit operation code and a 16-bit address. The word

| ength was 18-bits. The conputer had a 1-word

accunul ator and up to 65536 words of random access
magnetic core nmenory.

The TXOR conputer is very simlar, but has been adapted
for use in programm ng contests. |Its instruction set
is:

STORE addr ess Store accumulator in the word at
the gi ven address.

ADD addr ess Add the word at the given
address to the accunul ator.

TRANSFER addr ess Go to the instruction at the
gi ven address if the accunul ator
i S negati ve.

OPERATE source, operation, destination

I nput the source word, perform
the indicated operation on it,
and output the result to the
desti nati on.

sour ces:
AC Accunul at or
READ Read t he next row of the input

tape, and interpret that row as
a word value. O use the value
O0if the tape is at its end.

EOF The value 0 if the | ast READ
command read the next row, and
the value -1 if it did not
because the tape was at its end.

operations:

CcoPY Copy the word
CLEAR Zero the word
NEGATE Negate the word

desti nati ons:

AC Accunul at or
HALT Halt normally and display result
ERROR Halt indicating error; the

result value is ignored

The nmenory of this conmputer consists of 256 32-bit
words. Both program and data nust be stored in this
[imted nenory.

The words are formated as 2's conpl enment integers (just
like 32-bit words in a nodern computer). Each
instruction takes one word (nost of which is unused).
You are to use an assenbler and therefore do not need to
know t he precise instruction format.

t xOr .t xt 10/ 10/ 07

07: 36: 47 2 of

The input is a punched paper tape with 32 col ums.
Every tine READ is used as a source to an OPERATE

instruction, the next row of the tape is read, thereby
reading a 32 bit word. |If there is no next row (because
the paper tape reader is at the end of tape), 0 is read.

The ECF source to the OPERATE command produces the val ue
O0if arowwas read by the | ast READ source to an
OPERATE conmand, and produces -1 if no row was read
because the tape was at its end.

The original TX-0 tape was had just 6 colums and
reliability concerns, but the TXOR paper tape has
32 columms and is conpletely reliable.

Pr ogr ans

A TXOR programis witten in a file whose nanme has the
.tx0r extension. A programis assenbled, and consists
of a sequence of word descriptions, each on one line.
The possible word description Iines are:

[l abel :] STORE addr ess

[l abel :] ADD addr ess

[l abel :] TRANSFER addr ess

[abel :] OPERATE source, operation, destination

[abel :] WORD val ue
STORE, ADD, TRANSFER, and OPERATE are instructions. You
need not know the format of instruction words, as you

wi Il be using an assenbler.
WORD describes a word whose initial value, at the
begi nni ng of program execution, is given.

Addresses and val ues nmay be integers or synbolic nanes,
where a synbolic nane is a sequences of letters, digits,
and underbars, beginning with a letter or underbar. The
first word descriptionis for the word at |ocation O,
the second for the word at location 1, etc. Any |abe
given is a synbolic nane that denotes the |ocation of

the word described on the same line. A |label may be
used as an address or val ue.
For the OPERATE cl ass instruction, sources, operations,

and destinations are named as indi cated above. See

t he exanpl e bel ow.

Blank lines in the input are ignored. The characters
“//" and anything following themin a line are ignored;
so coments begin with *//’.

Pr ogram executi on begins at word O.

t XxOr . t xt

10/ 10/ 07

07: 36: 47 3 of

Exanmpl e Program

This programreads the data i nput and outputs the sum of

all the input val ues.

After the test case name are the contents of the input
data tape that the program can read using the READ
source to the OPERATE instruction. These contents
consi st of a sequence of zero or nore integers.

Each test case ends just before the end of file or the

OPERATE AC, CLEAR, AC /1 sum=0 next |ine beginning with a letter.
STORE sum
| oop: OPERATE READ, COPY, AC /] datum = READ The input ends with an end of file.
STORE dat um
OPERATE EOF, COPY, AC /1 if ECF goto Qut put
TRANSFER end_| oop /1 end loop |------
OPERATE AC, CLEAR, AC /1 sum += datum
ADD dat um For each test case the simulator outputs one |line
ADD sum containing the test case name, as input, and one |ine
STORE sum cont ai ni ng one of the foll ow ng:
OPERATE AC, CLEAR, AC /1 goto |oop
ADD M nus_one HALT result
TRANSFER | oop ERROR
end_| oop: OPERATE AC, CLEAR, AC /1 HALT sum
ADD sum The result is an integer, printed with no spaces or high
OPERATE AC, COPY, HALT order zeros. There is a single space character before
sum WORD 0 this result, and no other space characters in the |ine.
dat um WORD 0 The words HALT and ERROR are the destination of the
m nus_one: WORD -1 OPERATE i nstruction that halted the program
I nput
You will be using a sinulator that executes a program

under the direction of an input file.

The input file consists of any nunmber of test cases.
Each test case begins with a line that contains nothing
but the test case nane. This nanme nust begin with a
letter.

t xOr .t xt 10/ 10/ 07 O07:36: 47 4 of 5

Si nul ati on Commrand Exanpl e | nput
You can use the ‘nmake’ and ‘make debug’ commands to TEST 1
run your program or you can run your programdirectly 1
with the command: 2

3

tx0r _simul ator [-debug] txOr.txOr 4

5
Thi s assenbles the TXOR code in the file txOr.tx0r and TEST 2
runs it according to the instructions in the standard TEST 3
i nput, which contains the input file. -debug prints an
assenbly listing, and after each instruction execution, -6
prints the pc and ac. The simulator wites results to 7
the standard out put. 8

2

-3

You are to wite a programin the TXOR | anguage in the | ------- ------
file txOr.tx0r. This programreads the input data tape

and HALTs displaying the difference between the snmall est TEST 1
datum and the largest datum It is an error if there HALT 4
are no data values (enpty input tape), and in this case TEST 2
the program shoul d execute an OPERATE instruction with ERROR
ERROR desti nati on. TEST 3

HALT 14

t xOr. t xt 10/ 10/ 07 07: 36: 47 5 of 5

File: t x0r. txt
Aut hor : Bob Wal t on <wal t on@leas. har var d. edu>
Dat e: Wed Cct 10 07:30: 22 EDT 2007

The aut hors have placed this file in the public domain
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $

$Dat e: 2007/10/10 11:36:47 $
$RCSfile: tx0Or.txt,v $
$Revision: 1.5 $

bendi ng. t xt 10/ 10/ 07

07:16: 42 1 of

Bendi ng Deck Boards

Robert is building a deck on the side of his house and
has a problem He is using ‘conposite boards’ for the
floor of the deck, but these, being made of the plastic
pol yet hyl ene and wood fiber, expand nuch nore than wood
when the tenperature gets hot. Robert is afraid the
boards will bend, or warp, because of this expansion

So he does a sinple calculation to see how bad the pro-
blemis. You are being asked to programthis cal cul a-
tion.

A section of board is nornmally a straight |ine between
two points, B and C, at which the board is fastened by
screws to joists. Suppose we have such a section of
length L, that is, the distance fromB to Cis L.
Suppose the section | ength changes by expansion to L+y,
where y > 0 is a small nunber, but the end points of
the section remain anchored at B and C. The section

must assume a non-straight-line shape. Assune it
becones an arc of a perfect circle, with end points
B and C. Let the circle have radius R Note that R

is determned by L and vy.

The straight line fromBto Cis then the chord of the
circle fromB to C. Let x be the maxi mum di stance
between a point on the arc and a point on the chord.

y measures the anount of expansion, and x neasures the
amount of bendi ng.

Not e t hat
mul ti plying al

if you change the scale of the situation by
di stances by a constant C, the circle
remains a circle but now of radius C-R the chord
remai ns a chord but now of length CL, the arc remains
an arc but now of length C*(L+y), and the maxi num

di stance between a point on the chord and a point on
the arc is now Crx. Therefore, x/L as a function of
y/ L does not depend on L. So you are asked to find
this function.

Note that given R you can conpute x and y. Also, R
decreases whenever y increases, and y/L as a function
of R'L does not depend on L. The problemreduces to
conputing R'L fromy/L by inverting a nonotonic func-
tion.

For each of several cases, a |line containing a val ue

for y/L. No lines contain any spaces. The input
termnates with an end of file.
CQut put
For each case a line containing in order
the value of y/L
a single space
the value of R/L
a single space
the value of x/L
Print all values with exactly 8 deci mal places. Do not

Use doubl e precision float-
conput at i ons.

i ncl ude any extra spaces.
ing point arithnetic for al

bendi ng. t xt 10/ 10/ 07

07:16: 42

2 of 2

Exanmpl e | nput

0. 01000000 2.06885226 0.06132899
0. 02000000 1.48249945 0. 08686174

File: bendi ng. t xt
Aut hor : Bob Wl t on <wal t on@leas. har var d. edu>
Dat e: Wed Cct 10 07:12:26 EDT 2007

The aut hors have placed this file in the public donain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $

$Dat e: 2007/10/10 11:16:42 $
$RCSfile: bending.txt,v $
$Revision: 1.3 $

cl i ques. txt 10/ 10/ 07 07:28:01 1 of

G ven an undirected graph G (a set of vertices and
edges), a clique Cin Gis a set of vertices each pair
of which is joined by an edge of G

G ven a graph G you are asked to find all the cliques
of Gwith at |east 3 vertices.

We restrict ourselves to graphs with at npst 26 nodes
that are | abeled A through Z. W represent edges by
words consisting of two letters, where the letters are
i n al phabetical order. For exanple, AX represents an
edge, but XA does not. W represent cliques by words
that list all the vertices in a clique in al phabetica
order. For exanple, AXZ might represent a clique in
some graph, but AZX could NOT be a |egal clique
representative.

To represent a graph or a set of cliques, we list repre-
sentatives of edges of the graph, or of the cliques in
the set, lexicographically: that is, in dictionary
order. See the exanples bel ow.

For each of several cases, a specification of a
graph G as foll ows:

A line containing the name of the graph.

A line containing the nunber n of edges.

n lines each containing nothing but a two letter word
representing an edge. No edge will be repeated,

and the edge representatives will be sorted
| exi cographi cal | y.

Only the graph nane |ine may contain any spaces. The
input termnates with an end of file.

For each case, a single line containing the nanme of the
graph exactly as input, followed by one line for each
cliqgue with 3 or nore vertices. The line for a clique
contains just the representative of the clique, and al
the clique Iines for one graph are sorted | exi cographic-
ally.

Exanpl e | nput

TEST 1

AB
AC
AD
BC
BD

TEST 2
10
AE
AF
BE
BF
BX
EF

FX
XY
YZ

cliques.txt

10/ 10/ 07 07:28:01

2 of 2

Exanpl e Qut put

TEST 1
ABC
ABCD
ABD
ACD
BCD
TEST 2
AEF
BEF
BEFX
BEX
BFX
EFX

File: cl

Aut hor : Bob Wal ton <wal t on@leas. har var d. edu>

Dat e: Wed

The aut hors have placed this file in the public domain
they make no warranty and accept no liability for this

file.

RCS Info (may not be true date or author):

ques. t xt

Cct 10 07:18:28 EDT 2007

$Aut hor: walton $

$Dat e: 200
$RCSfi | e:
$Revi si on:

7/10/10 11:28:01 $
cliques.txt,v $
1.3 %

