
problems 10/10/07 13:03:30 1 of 1
Problems Index Wed Oct 10 01:03:30 PM EDT 2007

BOSPRE 2007 Problems.

The problems are in approximate order of difficulty,
easiest first.

 problems/piglatin
 High school keeps coming back.

 problems/antique
 Did the Romans have it right?

 problems/shootemup
 A little intelligence goes a long way.

 problems/tx0r
 Antique computers fascinate some people.

 problems/bending
 Sea legs for the land decks.

 problems/cliques
 Networking has its clusters.

piglatin.txt 10/10/07 03:33:35 1 of 2
Pig Latin

You have been asked to translate English words to Pig
Latin. The translation is very simple: take all the
consonants at the beginning of the word, move them to
the end, and add ‘ay’. If there are no consonants at
the beginning of the word, just add ‘ay’ to the end.
The consonants are all letters except ‘a’, ‘e’, ‘i’,
‘o’, ‘u’, and ‘y’. Note that ‘y’ is NOT a consonant
for our purposes.

Input

A sequence of lines each containing an English word.
There are no spaces in any line. Words will contain
only lower case letters.

The input ends with an end of file.

Output

For each English word, one line containing nothing but
the translation of the word into Pig Latin.

Example Input
------- -----

you
help
me
to
understand
pig
latin
this
hour

Example Output
------- ------

youay
elphay
emay
otay
understanday
igpay
atinlay
isthay
ourhay

Note: Actual Pig Latin moves only initial consonant
SOUNDS, and therefore does not move unsounded initial
consonants. Thus ‘hour’ would become ‘houray’ in
actual Pig Latin. There are also variants which put
‘way’ or ‘yay’ or some such at the end of words that
begin with a vowel sound.

piglatin.txt 10/10/07 03:33:35 2 of 2

File: piglatin.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Wed Oct 10 03:31:33 EDT 2007

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2007/10/10 07:33:35 $
 $RCSfile: piglatin.txt,v $
 $Revision: 1.3 $

antique.txt 10/10/07 12:05:57 1 of 3
Antique Formatting

You have been asked to write prototype a formatting
function. As a test your program is to read a format-
ting string and some arguments, and apply the formatting
string to the arguments.

You boss, however, is a bit on the antique side.

The formatting string is a sequence of commands, each
of which is a single character. For the prototype,
only two commands are implemented:

 w Print the next argument as a string of words.

 i Print the next argument as an integer, treating
 the formatted integer as one word.

However, as we said, your boss is antique. Words are to
be printed from right to left in the output. An integer
is to be printed as a Roman numeral word. For this
prototype, each formatting string produces one line of
output, with words separated by single spaces, and no
other spaces in the line.

More specifically, the words in a ‘w’ string are separa-
ted by single spaces, but these spaces are discarded
after extracting the words. The order of the words in
the string is the reverse of the order of the words in
the output line. However, the letters within a printed
word are in the same order as the letters within the
word in the string. So word order is reversed but
letter order is not.

Roman numerals use the following letters to represent
numbers:

 I 1
 V 5
 X 10
 L 50
 C 100
 D 500
 M 1000

There is no way to represent zero, and you will not be
asked to print zero.

The first 10 numbers are encoded as:

 I 1
 II 2
 III 3
 IV 4 (-1 + 5)
 V 5
 VI 6
 VII 7
 VIII 8
 IX 9 (-1 + 10)
 X 10

Your boss wants you to simply encode the digits of the
integer using the encodings just given. For the tens
digit you simply make the replacements:

 I --> X
 V --> L
 X --> C

antique.txt 10/10/07 12:05:57 2 of 3

and for the hundreds digit

 I --> C
 V --> D
 X --> M

You will not be asked to print any number larger than
3999, which allows you to use M, MM, or MMM for the
thousands digit.

Note the order that digits are printed in is the same
for decimal and our Roman numerals. The thousands digit
is printed before the hundreds digit, etc.

For example, 1999 is printed as MCMXCIX, and 1849 as
MDCCCXLIX.

Input

For each test case, one line containing the name of the
test case, followed by one line containing the format-
ting command string, followed by one line for each
argument containing just the argument, followed by an
empty line. Input integers are represented in decimal,
and are in the range from 1 to 3,999.

Input ends with an end of file.

Output

For each test case, one line containing the name of the
test case, followed by the output line for that test
case.

No output line will be longer than 80 characters.

Sample Input
------ -----

TEST-1
wiw
we want
4
words

TEST-2
iwiwi
2
plus
2
equals
4

TEST-3
wi
a good year is
1999

TEST-4
wi
another year is
1849

TEST-5
wi
the last year of the millennium is
2000

[Note the last line of the input is empty.]

antique.txt 10/10/07 12:05:57 3 of 3

Sample Output
------ ------

TEST-1
words IV want we
TEST-2
IV equals II plus II
TEST-3
MCMXCIX is year good a
TEST-4
MDCCCXLIX is year another
TEST-5
MM is millennium the of year last the

File: antique.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Wed Oct 10 12:05:13 EDT 2007

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2007/10/10 16:05:57 $
 $RCSfile: antique.txt,v $
 $Revision: 1.5 $

shootemup.txt 10/10/07 12:44:21 1 of 5
The Land of Shot-Em-Up

In the Land of Shot-Em-Up conflicts are settled by robot
duels. Each side builds a robot. The two robots are
turned loose, on their own, in an arena, and whichever
robot kills (makes non-functional) the other robot wins
for its side of the conflict.

You have entered ‘Conflict School’ in the land of Shot-
Em-Up, and are taking a (very) beginning course in
programming these robots. Your first assignment is to
program a simple robot that will do battle in a virtual
world.

The virtual world is a 10x10 board of squares. The two
robots take turns making moves. A move is one of:

 moving one square in any of the 8 directions
 (4 of which are diagonal)

 staying put at the robot’s current location

 shooting in any of the 8 directions,
 while staying put at the current location

If you move off the edge of the board you die.

If you shoot in a direction the shot hits anything in
its path at the time of the shot. A robot can absorb
2 hits without ceasing to function, but will die when
it receives a 3’rd hit. However, if you shot in your
last move, your shot in this move will have too little
power to hit anything. Your ‘gun’ takes one move
without shooting to ‘recharge’.

Somewhat oddly both robots can occupy the same square
of the board at the same time. If one of the robots
shoots at such a time, the shot never hits the other
robot.

The robots cannot see each other. They can tell, how-
ever, when they are hit, and from what direction the
shot that hit them came.

Your assignment is to write a robot program good enough
to beat a given opponent at least 51 out of 100 times.
The opponent is a stupid random robot provided by the
teacher.

Your program is not run directly, but instead is run by
another program called ‘arena’.

Your Program’s Input

The ‘arena’ program writes lines that appear in your
program’s standard input. These lines, which give you
information, have the following format:

 P x y

 Prepare to start a new combat. You are on board
 square (x,y). Here x and y are integers, with
 0 <= x,y <= 9.

 H dx dy

 Your opponent shot you in his last move. The
 shot passed through square (x+dx,y+dy) on its
 way to hitting you, where you are currently at
 square (x,y), dx and dy are integers, dx and
 dy are not both 0, and -1 <= dx,dy <= 1.

 N

 Your opponent did not shot you in his last move.

shootemup.txt 10/10/07 12:44:21 2 of 5

 W

 Your opponent died in your or his last move,
 and you have won. The combat is over.

 L

 You died in your or your opponents last move,
 and you have lost. The combat is over.

 D<anything>

 This line is a debugging instruction for your
 program. You produce such lines by giving them
 as input to the arena program: see below.

After inputting a P, N, or H line, you must make a move
by outputting an M or S line, as specified below. After
inputting a W or L line, you should read another line.
The next thing input will be a P line or the end of
file. After inputting a D line, you should do what the
D line tells you to (you decide what this is), and then
input another line. You can output / lines anytime (see
below) with debugging information.

There are no superfluous space characters on any input
line. The board squares are numbered (0,0) at the upper
left to (9,9) at the lower right. To make a move, you
output an M or S line (see below), and then you read
a line of input to find out what happened next.

Your program should terminate when it reads an end of
file.

Your Program’s Output

Your program writes lines to its standard output that
are read by the ‘arena’ program. These lines announce
your moves, and have the following formats:

 M dx dy

 Move from your current board square (x,y) to the
 board square (x+dx,y+dy), where dx and dy are
 integers and -1 <= dx,dy <= +1. dx = dy = 0 is
 permitted, and is used to implement the ‘staying
 put’ move. 0 <= x+dx,y+dy <= 9 is required
 (else you die and lose).

 S dx dy

 Shoot. The shot starts at your current square
 (x,y) and goes in a straight line through the
 square (x+dx,y+dy) and on to the edge of the
 board. Here -1 <= dx,dy <= +1, and dx,dy are
 both integers. dx and dy may NOT both be 0.
 You are allowed to shoot off the edge of the
 board, e.g., x+dx > 9 is allowed, but you will
 not hit anything.

 /<anything>

 This is a comment line. It is output by the
 arena program, and may be used for debugging.
 E.g., you may output / lines in response to
 a D line.

You cannot move and shoot at the same time.

shootemup.txt 10/10/07 12:44:21 3 of 5

Arena Input

The ‘arena’ program reads commands from its standard
input, which is normally the shootemup.in file. These
commands define test cases and debugging options.

 G n Reset the random number generator seed
 to n, which must be an unsigned integer
 with at most 9 digits. The random
 number generator is used by your
 opponent, and is used to determine your
 initial position. If you want your
 opponent to behave differently, or to
 run rounds differently, you must input
 a different seed.

 -<anything> Start a new combat. This line is echoed
 to the standard output and serves to
 name the combat. This is the first
 input line describing a combat,
 excepting those combats conducted by an
 R command.

 + Make a pair of moves, one for you and
 one for your opponent.

 . Continue the combat to the end.

 B Display the board. Good for debugging.
 On the board, ‘Y’ is you after your last
 move, ‘O’ is your opponent at the same
 time, ‘+’s mark your shot if you shot in
 your last move, ‘-’s mark your oppon-
 ent’s shot if it shot in its last move.

 B1 Turn on display of the board after every
 move of your opponent.

 B0 Turn off ditto.

 *<anything> Comment line. Echoed to standard
 output.

 D<anything> This line is sent to your program. It
 can be used to trigger a debugging
 action: see above.

 R n Run a round of n combats, and print a
 round line at the end. The round line
 has the form

 ! ROUNDS r WINS w LOSES l ERRORS e j

 where

 r is the number of rounds
 w is the number of rounds that
 ended in wins for you
 l is the number of rounds that
 ended in loses for you
 e is the number of rounds that
 ended when your program made
 and error (explained in
 ‘*’ lines)
 j is the judgment, which is
 ‘PASS’ if 2w > r
 ‘FAIL’ if 2w <= r

Unless a combat initiated by a ‘-’ command is in
progress, only G, R, and ‘-’ commands are executed.

shootemup.txt 10/10/07 12:44:21 4 of 5

Example Arena Input
------- ----- -----

The following can be put in the shootemup.in file.

G 55
-TEST 1
B1
+
+
+
.
R 100
R 100
R 100

Arena Output

The ‘arena’ program writes output to its standard
output, which is normally put in the shootemup.out file.

The ‘arena’ program echos all its input lines, all the
lines it sends to your program, and all the lines it
receives from your program. As an exception, the lines
your program sends arena and that arena sends your
program are NOT echoed during the R command.

The arena program outputs lines beginning with ‘!’ that
contain error messages, board positions, etc.

If you execute

 arena shootemup < xx.in > xx.out
 arena shootemup < xx.out > foo

Then foo and xx.out should be identical. That is, the
the second command will repeat the moves made by the
first command.

Similarly, to replay a game in the debugger you execute

 grep ’^[PHNWLD]’ xx.out > xx.din
 gdb shootemup
 run < xx.din

shootemup.txt 10/10/07 12:44:21 5 of 5

Example Arena Output
------- ----- ------

G 55
-TEST 1
P 5 6
B1
+
S 0 1
N
!
! ...-......
!-.....
!-....
!-...
!-..
!O.
!Y....
!+....
!+....
!+....
!
[[Substantial output omitted here]]
R 100
! ROUNDS 100 WINS 91 LOSES 9 ERRORS 0 PASS
R 100
! ROUNDS 100 WINS 87 LOSES 13 ERRORS 0 PASS
R 100
! ROUNDS 100 WINS 92 LOSES 8 ERRORS 0 PASS

File: shootemup.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Wed Oct 10 12:44:10 EDT 2007

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2007/10/10 16:44:21 $
 $RCSfile: shootemup.txt,v $
 $Revision: 1.9 $

tx0r.txt 10/10/07 07:36:47 1 of 5
The TX-0 Reincarnate

The TX-0 computer was built in 1955 as an experimental
computer to test transistor circuitry, which was new to
computers at that time. Its instructions contained a
2-bit operation code and a 16-bit address. The word
length was 18-bits. The computer had a 1-word
accumulator and up to 65536 words of random access
magnetic core memory.

The TX0R computer is very similar, but has been adapted
for use in programming contests. Its instruction set
is:

 STORE address Store accumulator in the word at
 the given address.

 ADD address Add the word at the given
 address to the accumulator.

 TRANSFER address Go to the instruction at the
 given address if the accumulator
 is negative.

 OPERATE source,operation,destination

 Input the source word, perform
 the indicated operation on it,
 and output the result to the
 destination.

 sources:

 AC Accumulator

 READ Read the next row of the input
 tape, and interpret that row as
 a word value. Or use the value
 0 if the tape is at its end.

 EOF The value 0 if the last READ
 command read the next row, and
 the value -1 if it did not
 because the tape was at its end.

 operations:

 COPY Copy the word

 CLEAR Zero the word

 NEGATE Negate the word

 destinations:

 AC Accumulator

 HALT Halt normally and display result

 ERROR Halt indicating error; the
 result value is ignored

The memory of this computer consists of 256 32-bit
words. Both program and data must be stored in this
limited memory.

The words are formated as 2’s complement integers (just
like 32-bit words in a modern computer). Each
instruction takes one word (most of which is unused).
You are to use an assembler and therefore do not need to
know the precise instruction format.

tx0r.txt 10/10/07 07:36:47 2 of 5

The input is a punched paper tape with 32 columns.
Every time READ is used as a source to an OPERATE
instruction, the next row of the tape is read, thereby
reading a 32 bit word. If there is no next row (because
the paper tape reader is at the end of tape), 0 is read.
The EOF source to the OPERATE command produces the value
0 if a row was read by the last READ source to an
OPERATE command, and produces -1 if no row was read
because the tape was at its end.

The original TX-0 tape was had just 6 columns and
reliability concerns, but the TX0R paper tape has
32 columns and is completely reliable.

Programs

A TX0R program is written in a file whose name has the
.tx0r extension. A program is assembled, and consists
of a sequence of word descriptions, each on one line.
The possible word description lines are:

 [label:] STORE address
 [label:] ADD address
 [label:] TRANSFER address
 [label:] OPERATE source,operation,destination
 [label:] WORD value

STORE, ADD, TRANSFER, and OPERATE are instructions. You
need not know the format of instruction words, as you
will be using an assembler.

WORD describes a word whose initial value, at the
beginning of program execution, is given.

Addresses and values may be integers or symbolic names,
where a symbolic name is a sequences of letters, digits,
and underbars, beginning with a letter or underbar. The
first word description is for the word at location 0,
the second for the word at location 1, etc. Any label
given is a symbolic name that denotes the location of
the word described on the same line. A label may be
used as an address or value.

For the OPERATE class instruction, sources, operations,
and destinations are named as indicated above. See
the example below.

Blank lines in the input are ignored. The characters
‘//’ and anything following them in a line are ignored;
so comments begin with ‘//’.

Program execution begins at word 0.

tx0r.txt 10/10/07 07:36:47 3 of 5

Example Program
------- -------

This program reads the data input and outputs the sum of
all the input values.

 OPERATE AC,CLEAR,AC // sum = 0
 STORE sum
loop: OPERATE READ,COPY,AC // datum = READ
 STORE datum
 OPERATE EOF,COPY,AC // if EOF goto
 TRANSFER end_loop // end_loop
 OPERATE AC,CLEAR,AC // sum += datum
 ADD datum
 ADD sum
 STORE sum
 OPERATE AC,CLEAR,AC // goto loop
 ADD minus_one
 TRANSFER loop
end_loop: OPERATE AC,CLEAR,AC // HALT sum
 ADD sum
 OPERATE AC,COPY,HALT
sum: WORD 0
datum: WORD 0
minus_one: WORD -1

Input

You will be using a simulator that executes a program
under the direction of an input file.

The input file consists of any number of test cases.
Each test case begins with a line that contains nothing
but the test case name. This name must begin with a
letter.

After the test case name are the contents of the input
data tape that the program can read using the READ
source to the OPERATE instruction. These contents
consist of a sequence of zero or more integers.

Each test case ends just before the end of file or the
next line beginning with a letter.

The input ends with an end of file.

Output

For each test case the simulator outputs one line
containing the test case name, as input, and one line
containing one of the following:

 HALT result
 ERROR

The result is an integer, printed with no spaces or high
order zeros. There is a single space character before
this result, and no other space characters in the line.
The words HALT and ERROR are the destination of the
OPERATE instruction that halted the program.

tx0r.txt 10/10/07 07:36:47 4 of 5

Simulation Command
---------- -------

You can use the ‘make’ and ‘make debug’ commands to
run your program, or you can run your program directly
with the command:

 tx0r_simulator [-debug] tx0r.tx0r

This assembles the TX0R code in the file tx0r.tx0r and
runs it according to the instructions in the standard
input, which contains the input file. -debug prints an
assembly listing, and after each instruction execution,
prints the pc and ac. The simulator writes results to
the standard output.

Problem

You are to write a program in the TX0R language in the
file tx0r.tx0r. This program reads the input data tape
and HALTs displaying the difference between the smallest
datum and the largest datum. It is an error if there
are no data values (empty input tape), and in this case
the program should execute an OPERATE instruction with
ERROR destination.

Example Input
------- -----

TEST 1
1
2
3
4
5
TEST 2
TEST 3
5
-6
7
8
2
-3

Example Output
------- ------

TEST 1
HALT 4
TEST 2
ERROR
TEST 3
HALT 14

tx0r.txt 10/10/07 07:36:47 5 of 5

File: tx0r.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Wed Oct 10 07:30:22 EDT 2007

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2007/10/10 11:36:47 $
 $RCSfile: tx0r.txt,v $
 $Revision: 1.5 $

bending.txt 10/10/07 07:16:42 1 of 2
Bending Deck Boards

Robert is building a deck on the side of his house and
has a problem. He is using ‘composite boards’ for the
floor of the deck, but these, being made of the plastic
polyethylene and wood fiber, expand much more than wood
when the temperature gets hot. Robert is afraid the
boards will bend, or warp, because of this expansion.
So he does a simple calculation to see how bad the pro-
blem is. You are being asked to program this calcula-
tion.

A section of board is normally a straight line between
two points, B and C, at which the board is fastened by
screws to joists. Suppose we have such a section of
length L, that is, the distance from B to C is L.
Suppose the section length changes by expansion to L+y,
where y > 0 is a small number, but the end points of
the section remain anchored at B and C. The section
must assume a non-straight-line shape. Assume it
becomes an arc of a perfect circle, with end points
B and C. Let the circle have radius R. Note that R
is determined by L and y.

The straight line from B to C is then the chord of the
circle from B to C. Let x be the maximum distance
between a point on the arc and a point on the chord.
y measures the amount of expansion, and x measures the
amount of bending.

Note that if you change the scale of the situation by
multiplying all distances by a constant C, the circle
remains a circle but now of radius C*R, the chord
remains a chord but now of length C*L, the arc remains
an arc but now of length C*(L+y), and the maximum
distance between a point on the chord and a point on
the arc is now C*x. Therefore, x/L as a function of
y/L does not depend on L. So you are asked to find
this function.

Note that given R you can compute x and y. Also, R
decreases whenever y increases, and y/L as a function
of R/L does not depend on L. The problem reduces to
computing R/L from y/L by inverting a monotonic func-
tion.

Input

For each of several cases, a line containing a value
for y/L. No lines contain any spaces. The input
terminates with an end of file.

Output

For each case a line containing in order:

 the value of y/L
 a single space
 the value of R/L
 a single space
 the value of x/L

Print all values with exactly 8 decimal places. Do not
include any extra spaces. Use double precision float-
ing point arithmetic for all computations.

bending.txt 10/10/07 07:16:42 2 of 2

Example Input
------- -----

0.01
0.02

Example Output
------- ------

0.01000000 2.06885226 0.06132899
0.02000000 1.48249945 0.08686174

File: bending.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Wed Oct 10 07:12:26 EDT 2007

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2007/10/10 11:16:42 $
 $RCSfile: bending.txt,v $
 $Revision: 1.3 $

cliques.txt 10/10/07 07:28:01 1 of 2
Cliques

Given an undirected graph G (a set of vertices and
edges), a clique C in G is a set of vertices each pair
of which is joined by an edge of G.

Given a graph G, you are asked to find all the cliques
of G with at least 3 vertices.

We restrict ourselves to graphs with at most 26 nodes
that are labeled A through Z. We represent edges by
words consisting of two letters, where the letters are
in alphabetical order. For example, AX represents an
edge, but XA does not. We represent cliques by words
that list all the vertices in a clique in alphabetical
order. For example, AXZ might represent a clique in
some graph, but AZX could NOT be a legal clique
representative.

To represent a graph or a set of cliques, we list repre-
sentatives of edges of the graph, or of the cliques in
the set, lexicographically: that is, in dictionary
order. See the examples below.

Input

For each of several cases, a specification of a
graph G as follows:

 A line containing the name of the graph.

 A line containing the number n of edges.

 n lines each containing nothing but a two letter word
 representing an edge. No edge will be repeated,
 and the edge representatives will be sorted
 lexicographically.

Only the graph name line may contain any spaces. The
input terminates with an end of file.

Output

For each case, a single line containing the name of the
graph exactly as input, followed by one line for each
clique with 3 or more vertices. The line for a clique
contains just the representative of the clique, and all
the clique lines for one graph are sorted lexicographic-
ally.

Example Input
------- -----

TEST 1
6
AB
AC
AD
BC
BD
CD
TEST 2
10
AE
AF
BE
BF
BX
EF
EX
FX
XY
YZ

cliques.txt 10/10/07 07:28:01 2 of 2

Example Output
------- ------

TEST 1
ABC
ABCD
ABD
ACD
BCD
TEST 2
AEF
BEF
BEFX
BEX
BFX
EFX

File: cliques.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Wed Oct 10 07:18:28 EDT 2007

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2007/10/10 11:28:01 $
 $RCSfile: cliques.txt,v $
 $Revision: 1.3 $

