
problems 10/14/06 00:05:58 1 of 1
Problems Index Sat Oct 14 12:05:58 AM EDT 2006

The problems are in approximate order of difficulty,
easiest first.

 problems/jaybot
 Jumping around keeps things lively.
 Boston Preliminary 2006

 problems/handonwall
 How to explore the unknown.
 Boston Preliminary 2006

 problems/blowfish
 Scramble faster.
 Boston Preliminary 2006

 problems/endtoend
 When was what said?
 Boston Preliminary 2006

 problems/serializable
 No conflicted dipping into the food line.
 Boston Preliminary 2006

 problems/render
 The eyes get it.
 Boston Preliminary 2006

 problems/temporal
 And you thought you understood time.
 Boston Preliminary 2006

jaybot.txt 10/11/06 10:32:58 1 of 2
Jumping Robot
------- -----

A Jumping Robot, or J-Bot, or Jaybot, is a robot that
jumps instead of rolling or walking. The robot has a
current position (x,y) and a jump vector (dx,dy). The
robot moves by jumping from (x,y) to position
(x+dx,y+dy).

The possible commands to a jaybot whose position is
(x,y) and whose jump vector is (dx,dy) are:

 New New
 Command Position Jump Vector

 jump (x+dx,y+dy) (dx,dy)

 turn left (x,y) L(dx,dy)

 turn right (x,y) R(dx,dy)

 vector b c (x,y) (b,c)

Here R rotates a vector 90 degrees clockwise and L
rotates a vector 90 degrees counterclockwise.

In this problem the jaybot lives on a board of MxN
squares, each square with integer coordinates. All
numbers are integers. The square in the lower left
corner of the board has coordinates (0,0), and the
square in the upper right corner has coordinates
(M-1,N-1).

You are asked to plot the path of the jaybot by putting
a letter on each square the jaybot visits. The first
visited square (the jaybot’s initial position) gets ‘A’,
the second visited square gets ‘B’, etc. Unvisited
squares are represented by the character ‘.’. If a
square is visited several times, it only remembers the
last letter it was given.

Input

Each of several test cases. Each case consists of a
test case name line followed by the line:

 M N x y dx dy

with 6 integers. The board is MxN. (x,y) is the ini-
tial position of the jaybot, and (dx,dy) the initial
jump vector. 2 <= M,N <= 40; 0 <= x < M; 0 <= y < N.
The x-axis is horizontal (M columns) and the y-axis is
vertical (N rows).

After the first two lines there are any number of
command lines, each containing just one command as
specified by the above table. Thus the ‘vector’ command
is a line with the word ‘vector’ followed by two inte-
gers, b and c, all separated by whitespace.

The commands are followed by a line containing nothing
but "end".

The jaybot is guaranteed not to jump off the edge of the
board.

No input line is longer than 80 characters. Input ends
with an end of file.

Output

For each test case, one empty line, followed by an exact
copy of the test case name line, followed by a printout
of the board with the path of the jaybot marked as indi-
cated above. Note that the first line output is an
empty line, and there are no space characters in any
output line except perhaps in the test case name line.

jaybot.txt 10/11/06 10:32:58 2 of 2

Sample Input
------ -----

-- SAMPLE 1 --
30 8 5 1 1 1
jump
turn right
jump
vector 2 2
jump
turn right
jump
vector 3 3
jump
turn right
jump
vector 4 4
jump
turn right
jump
end
-- SAMPLE 2 --
10 5 0 0 1 1
jump
jump
turn left
jump
turn right
jump
vector 4 0
jump
turn right
jump
turn right
jump
turn right
jump
end

Sample Output
------ ------

[The output below begins with an empty line.]

-- SAMPLE 1 --
..............................
..............................
.....................H........
..............F...............
.........D....................
......B.......................
.....A.C...E.....G.......I....
..............................

-- SAMPLE 2 --
..I...F...
.D........
..C.......
.B........
A.H...G...

File: jaybot.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Wed Oct 11 10:32:51 EDT 2006

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2006/10/11 14:32:58 $
 $RCSfile: jaybot.txt,v $
 $Revision: 1.8 $

handonwall.txt 10/10/06 02:22:07 1 of 4
Right Hand on the Wall
----- ---- -- --- ----

Karel the Robot lives on a 10x10 board of squares. Each
boundary line of a square may or may not have a wall.
At any given time, Karel is on one particular square,
and is facing in one of four directions: up, left, down,
or right.

Karel can move forward one square if there is no wall in
front of him. Alternatively, Karel can turn 90 degrees
clockwise or 90 degrees counter-clockwise. These are
the only moves Karel can make. Karel can sense whether
there is a wall in front of him.

In this problem Karel repeats the ’Right Hand on the
Wall’ algorithm, which is:

 (1) If there is a wall in front of Karel, Karel
 turns counterclockwise 90 degrees.

 (2) Otherwise if the square in front of Karel is the
 original square on which Karel started, Karel
 stops (WITHOUT moving forward to the original
 square).

 (3) Otherwise Karel moves forward one square and
 turns clockwise 90 degrees;

Starting from an initial position facing a wall, Karel
repeats this algorithm until he stops.

The boundary lines on the edge of the board all have
walls, so Karel can never fall off the edge of the
board, and will always eventually stop.

You are asked to make Karel move according to this
algorithm, and display the results.

Board Display
----- -------

The 10x10 board is displayed in a 21x21 character matrix
that can be printed in 21 lines of 21 columns each.

There is one character position for each square, for
each boundary line of a square, and for each corner of
a square.

The corner character positions hold the ‘+’ character.

The boundary line character positions hold the space
character if there is no wall at the boundary, or ‘-’
for a horizontal boundary wall, or ‘|’ for a vertical
boundary wall.

A square character position holds the space character if
Karel has never visited the position. Otherwise it
holds a character showing the direction Karel LAST faced
when he was at that square. ‘<’ and ‘>’ are used for
‘facing left’ and ‘facing right’, respectively. ‘^’ and
‘v’ are used for ‘facing up’ and ‘facing down’, respec-
tively. Here ‘^’ is the circumflex and ‘v’ is the lower
case letter.

Input

Each of several test cases. Each case consists of an
empty line followed by a board display. On the board
display, Karel is shown as being at one position and
facing in one direction (there is only one ‘<’, ‘>’,
‘^’, or ‘v’ on the board). The start position is
always such that Karel is facing a wall, and all the
board edges have walls.

handonwall.txt 10/10/06 02:22:07 2 of 4

Input ends with an end of file.

Output

For each test case, a copy of the input for the test
case, with some board squares changed to hold characters
showing that Karel has been at the square and was facing
in a particular direction when he was last at the
square.

The board should show Karel’s movement using the Right
Hand on the Wall algorithm exactly as described above,
starting with the initial situation defined by the input
board.

The empty lines beginning each input test case are
copied to the output, so the first line output is an
empty line. The output should be an exact copy of the
input except that some square positions are changed to
‘>’, ‘^’, ‘<’, or ‘v’.

Sample Input
------ -----

[There is an empty line before each board.]

+-+-+-+-+-+-+-+-+-+-+
| | |
+ + + + + + + + + + +
| | |
+-+-+ + + + + + + + +
| |
+ + + + + + + + + + +
| |
+ + + + + + + + + + +
| |
+-+-+ + + + + +-+-+-+
| |
+-+-+ + + + + + + + +
| |
+ + + + + + + +-+-+-+
| | |
+ + + + + + + +-+-+-+
| |
+ + + + + + + + + + +
|v |
+-+-+-+-+-+-+-+-+-+-+

handonwall.txt 10/10/06 02:22:07 3 of 4

+-+-+-+-+-+-+-+-+-+-+
| | |
+ + + + +-+-+-+ + + +
| | |
+ + + + + + + +-+-+-+
| |
+ + + + + + + +-+-+-+
| | |
+-+-+-+-+-+ + + + + +
| | |
+ + + + +-+-+-+-+-+-+
| |
+ + + + + + + +-+-+-+
| | |
+ + + + + +-+-+ + + +
| >| |
+-+-+ + + + + + + + +
| | |
+ + +-+-+ + + + + + +
| | |
+-+-+-+-+-+-+-+-+-+-+

Sample Output
------ ------

[There is an empty line before each board.]

+-+-+-+-+-+-+-+-+-+-+
| |v < < < < < < <|
+ + + + + + + + + + +
| |v ^|
+-+-+ + + + + + + + +
|v < < ^|
+ + + + + + + + + + +
|v ^|
+ + + + + + + + + + +
|> > v > > > ^|
+-+-+ + + + + +-+-+-+
|> > v ^ < < <|
+-+-+ + + + + + + + +
|v < < > > > ^|
+ + + + + + + +-+-+-+
|v ^| |
+ + + + + + + +-+-+-+
|v ^ < < <|
+ + + + + + + + + + +
|> > > > > > > > > ^|
+-+-+-+-+-+-+-+-+-+-+

handonwall.txt 10/10/06 02:22:07 4 of 4

+-+-+-+-+-+-+-+-+-+-+
|v < < <| |
+ + + + +-+-+-+ + + +
|v ^ < < <| |
+ + + + + + + +-+-+-+
|v ^ < < <|
+ + + + + + + +-+-+-+
|> > > > > v ^| |
+-+-+-+-+-+ + + + + +
|v < < < < < ^| |
+ + + + +-+-+-+-+-+-+
|v ^ < < < < < <|
+ + + + + + + +-+-+-+
|v > > ^|v < <|
+ + + + + +-+-+ + + +
|> > v ^|v < < ^|
+-+-+ + + + + + + + +
| |> > ^ < ^|
+ + +-+-+ + + + + + +
| |> > > > > ^|
+-+-+-+-+-+-+-+-+-+-+

File: handonwall.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Tue Oct 10 02:10:25 EDT 2006

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2006/10/10 06:22:07 $
 $RCSfile: handonwall.txt,v $
 $Revision: 1.6 $

blowfish.txt 10/10/06 02:26:37 1 of 3
Mini-Blowfish
---- --------

The Blowfish algorithm has become a popular encryption
algorithm for data streams and large files, as it can
be efficiently implemented in software. In this problem
you are asked to code and test a miniature version of
this algorithm, which we call Mini-Blowfish, or MB for
short.

Description of MB:
----------- -- --

MB uses an 18+256 byte vector of ‘subkeys’. The first
18 of these are referred to as P[1] through P[18]. The
next 256 are referred to as S[0] through S[255]. The
18+256 subkeys are collectively referred to as K[1]
through K[18+256], so K[1] == P[1], K[18] == P[18],
K[19] == S[0], K[18+256] == S[255].

The S values define a ‘substitution-box’, or S-box, that
takes a byte B as input and returns the byte S[B] as
output, where bytes are viewed as unsigned integers from
0 through 255. E.g., if B == 5 the S-box returns S[5].

The data encryption algorithm inputs and outputs 16 bit
blocks. These are divided into a high order byte, HB,
and a low order byte LB, so block B == 256 * HB + LB.

The encryption algorithm is:

 Input B = 256 * HB + LB.
 For round R = 1 though 16:
 HB = HB xor P[R].
 LB = LB xor S[HB].
 swap HB and LB.
 Finishing:
 swap HB and LB (undo the round 16 swap).
 LB = LB xor P[17];
 HB = HB xor P[18];
 Output B = 256 * HB + LB.

Note that P[1], ..., P[18] are accessed in order by the
encryption algorithm. Decryption uses the same algori-
thm except that P[1], ..., P[18] are used in the reverse
order (P[18] is used in round 1 and P[1] is xor’ed at
the end into HB).

The main idea in Blowfish is the method of computing the
subkeys. In fact, the idea is to have a lot of subkeys
(full Blowfish as 1042 32-bit subkeys). Computing the
subkeys takes a long time, so changing the key in MB or
Blowfish is slow, and has been made so in order to have
a secure algorithm in which encrypting the data given
the subkeys is fast.

To initialize the subkey vector K[1], ..., K[18+256] you
need as input a password, which is any string of
characters. Let the bytes of the password be W[1],
W[2], ..., W[N] where N is the length of the password.
The MB subkey computation algorithm is then:

blowfish.txt 10/10/06 02:26:37 2 of 3

 Input W[1], ..., W[N].
 For i from 1 through 18+256:
 K[i] = 7 ** i mod 256;
 For i from 1 through N:
 K[i] = K[i] xor W[i];
 Set B = 0, a 16 bit value.
 For round Q from 1 through (18 + 256)/2:
 Encrypt B to obtain Encrypted-B
 Set B = Encrypted-B
 Let B = 256 * HB + LB as above.
 Set K[2*Q-1] = HB and K[2*Q] = LB.
 Output K[1], ..., K[18+256].

Note that the output B of the encryption in round Q be-
comes the input B to the encryption in round Q+1. Also
the subkeys at the end of round Q are the subkeys used
in the encryption in round Q+1. Thus B and the subkeys
keep changing as Q advances. The subkeys at the end of
round Q = (18+256)/2 are the final output of the subkey
computation algorithm.

Input

Lines each of which contains a password and some inte-
gers to be encrypted using the password, all followed
by the integer -1 (which is NOT to be encrypted). These
are separated from each other by whitespace. No line is
longer than 80 characters.

The password is a string of one or more letters and
digits, each interpreted as a byte equal to the ASCII
code of the letter or digit (ASCII codes are the codes
used to represent characters as integers in modern
computers, and all ASCII codes are between 0 and 127).
The integers to be encrypted are all in the range from 0
through 65535 (= 2**16 - 1), and each integer represents
a 16 bit block.

Input ends with an end of file.

Output

For each input line, one output line, in the same format
as the input line, except that each integer to be en-
crypted is replaced by the result of encrypting it.

Sample Input
------ -----

abcdefg 0 1 2 3 4 5 -1
2hotfudge 28647 64826 42873 60872 53872 7648 29640 -1

Sample Output
------ ------

abcdefg 61669 41297 34644 22212 18368 679 -1
2hotfudge 37515 44577 40580 64732 42141 33306 62416 -1

blowfish.txt 10/10/06 02:26:37 3 of 3

Further Information
------- -----------

Blowfish was invented by Bruce Schneier, and is describ-
ed at
 www.schneier.com/paper-blowfish-fse.html

Blowfish is one of a large number of ‘Feistel ciphers’.
The full algorithm uses 32 bit subkeys, 64 bit blocks,
and 4 S-boxes that are applied to the 4 bytes of a
32-bit half-block to get 4 32-bit half-blocks that are
combined using addition and exclusive-or to make one
32-bit half-block. The subkeys are initially set to
the fractional digits of PI, which are assumed to be
random. Short passwords are extended by cycling through
their bytes. However, like MB full Blowfish also has 16
rounds, 18 P values, and the same control flow as MB.

File: blowfish.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Tue Oct 10 02:26:24 EDT 2006

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2006/10/10 06:26:37 $
 $RCSfile: blowfish.txt,v $
 $Revision: 1.6 $

endtoend.txt 10/16/06 10:45:43 1 of 4
End To End
--- -- ---

Communications over an unreliable link can be made
reliable by a simple end-to-end protocol. Each end
sends messages which it numbers, 1, 2, 3, 4, etc.
What is actually sent for each message is the packet:

 checksum acknowledgment number message

The acknowledgment ACK is such that all messages with
numbers less than or equal to ACK have been correctly
received. The number is the number of the message being
sent (and is not zero). The checksum is the checksum of
the acknowledgment, the number, and the message, and is
used to test whether the packet has been correctly re-
ceived.

In addition there are also ‘null packets’ that contain
no message, and have the form:

 checksum acknowledgment 0

The receiver maintains three items of data: ACKOUT, the
number of the last message received correctly, ACKIN,
the largest acknowledgment received, and Q, a queue of
messages that are to be or have been sent but have not
yet been acknowledged as having been correctly received.
ACKOUT and ACKIN are initialized to 0, and Q is initial-
ly empty.

When the receiver receives a packet, the receiver uses
the checksum to see if the packet is correct.

Whenever the receiver receives a correct packet contain-
ing an acknowledgment ACK, if ACK > ACKIN, the receiver
discards ACK - ACKIN messages from the front of Q, as
these have been received correctly, and then sets ACKIN
= ACK.

Whenever the receive receives a correct packet whose
number equals ACKOUT + 1, the receive adds 1 to ACKOUT
and processes the message. Processing a message adds
output messages to the end of Q.

Whenever the receiver receives a packet, correct or not,
and has done the above processing, the receiver sends
one or more packets each containing the value of ACKOUT
after the above processing in the packet acknowledgment
field. If Q is empty, one null packet is sent. If Q is
not empty, one packet containing each message in Q is
sent, in the order the messages appear in Q, with the
first packet having message number ACKIN+1, the next
message number ACKIN+2, etc. However, Q itself is NOT
changed by this process: no messages are removed from Q
just because they have been sent.

As a special exception, if a correct null packet is re-
ceived with acknowledgment matching ACKIN and Q empty,
then no reply packet is sent. Otherwise the two ends
would be sending null packets back and forth indefin-
itely.

This protocol can handle two kinds of link errors. The
first is a message that is corrupted, so it has a bad
checksum, or is just completely lost, so it never ar-
rives. This may mean that a subsequent message will ar-
rive before it can be used, and will have to be discard-
ed. The second kind of link error is when a copy of an
old message that was successfully received and processed
arrives long after the original copy arrived.

endtoend.txt 10/16/06 10:45:43 2 of 4

You have been asked to write the code of one end of the
link. For your end, message processing is as follows.
Each message is string of text consisting of just space
characters and letters. In this a maximal string of
letters is called a ‘word’. You are to find the words
of each message in order, and output for each word one
message that contains just the word, with NO space char-
acters.

NOTES: You need NOT check for protocol errors due to
bugs in the code at other end of the link. An example
of such an error would be acknowledging a message that
has not yet been sent. A more subtle example is sending
two different messages with the same message number. In
this last case the above algorithm will process only the
first message whose message number equals ACKOUT + 1 at
the time its packet is received.

Input

Each packet is represented by a line with the format:

 checksum An unsigned integer.

 1 space character

 acknowledgment An unsigned integer.

 1 space character

 number An unsigned integer.

 1 space character

 message 0 or more space char-
 acters and letters.

 line feed This is NOT part of
 the message.

A correct checksum is just the sum of the acknowledg-
ment, the number, and the ASCII codes of all the charac-
ters in the message. No packet contains more than 80
characters. No checksum, acknowledgment, or number has
a sign or high order zeros.

The input ends with an end of file.

Output

For each input packet, echo the packet on a line with
the preface ‘* ’, that is, a * character followed by a
single space character. Then do the processing above
and output zero or more packets as required by the al-
gorithm. The output packets have the same format as the
input packets (and do NOT have any ‘* ’ prefix).

Sample Input
------ -----

1101 0 1 hello there
749 2 2 goodbye
1814 3 3 this is a duplicate
1814 3 3 this is a duplicate
7 7 0
2141 7 4 this has a bad checksum
1279 7 4 this does not
8 8 0
9 9 0
10 10 0
10 10 0

endtoend.txt 10/16/06 10:45:43 3 of 4

Sample Output
------ ------

* 1101 0 1 hello there
534 1 1 hello
539 1 2 there
* 749 2 2 goodbye
750 2 3 goodbye
* 1814 3 3 this is a duplicate
447 3 4 this
228 3 5 is
106 3 6 a
965 3 7 duplicate
* 1814 3 3 this is a duplicate
447 3 4 this
228 3 5 is
106 3 6 a
965 3 7 duplicate
* 7 7 0
3 3 0
* 2141 7 4 this has a bad checksum
3 3 0
* 1279 7 4 this does not
452 4 8 this
440 4 9 does
351 4 10 not
* 8 8 0
440 4 9 does
351 4 10 not
* 9 9 0
351 4 10 not
* 10 10 0
4 4 0
* 10 10 0

Further Information
------- -----------

Real algorithms also use a clock and send packets when
they have not received any packet in a sufficiently
long time and Q is non-empty. Sometimes they send
packets periodically even when Q is empty in order to
detect when the link has failed.

Real algorithms only send the low order bits of the
acknowledgment and message number.

Real algorithms use more sophisticated checksums.

If you think carefully about our algorithm, you will see
that there is an efficiency problem with it if both ends
of the link use our algorithm (with different message
processing, of course), because we can send a batch of
more than one packet in response to a single packet.
This can be fixed by batching more than one message in
one packet, or by other means.

There is an amusing theorem of computer science that
says that if you have two unreliable links connected,
as in

 X <----------> Y <----------> Z

you CANNOT make communications from X to Z reliable by
making each of the two links reliable. The problem is
that if Y fails and then restarts, and X has sent a
message to Y just before Y fails, X cannot tell whether
the message was forwarded to Z or not, and therefore
the message may be lost if X does not resend it or
duplicated if X does resend it.

endtoend.txt 10/16/06 10:45:43 4 of 4

The solution is for X and Z to run the end-to-end algor-
ithm themselves, without Y participating in the algor-
ithm (Y merely forwards packets). This does not mean
that making the two links reliable will not improve
efficiency or maintainability; just that it will not
guarantee reliability of XZ communications.

File: endtoend.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Mon Oct 16 10:46:36 EDT 2006

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2006/10/16 14:45:08 $
 $RCSfile: endtoend.txt,v $
 $Revision: 1.8 $

serializable.txt 10/10/06 09:04:01 1 of 3
Serializable

A transaction is a computation that can read and write
objects. Suppose we have several transactions and a set
of objects whose names are just single lower case
letters. A transaction is just a list of read and write
operations; for example:

 Rx Ry Rz Wx Wz

where Rx means read object x, Wx means write object x,
and so forth. These operations must be executed in the
order given. We are abstracting and so neglect to men-
tion the computations that derive the value written into
x from the values read from x, y, and z. To simplify we
will assume that every object has a unique name that is
just a single lower case letter.

Suppose we have a set of transactions and give each a
number: 1, 2, 3, For example,

 1: Rx Ry Rz Wx Wz
 2: Ry Rx Wz
 3: Ry Wy

A schedule is a list of transaction numbers that tells
the order in which operations of the transaction are
executed. For example:

 Schedule A:
 1 2 3 1 2 3 2 1 1 1
 Rx Ry Ry Ry Rx Wy Wz Rz Wx Wz

where we have written the operations executed under each
schedule transaction number. In other words, for this
schedule transaction 1 executes its first operation Rx,
then transaction 2 executes its first operation Ry, then
transaction 3 executes its first operation Ry, then
transaction 1 executes it next (second) operation Ry,
and so forth.

A schedule is SERIAL if all the operations of each
transaction are consecutive. Thus

 Schedule B:

 2 2 2 1 1 1 1 1 3 3
 Ry Rx Wz Rx Ry Rz Wx Wz Ry Wy

is a serial schedule.

Two schedules have the same effect of one can be made
from the other by switching the order of NON-CONFLICTING
operations. Two operations conflict if both are on the
same object and at least one is a write. Thus Rx and Wx
conflict, as do Wx and Wx, but Rx and Rx are non-con-
flicting, as are Rx and Wy and Wx and Wy.

A schedule is SERIALIZABLE if it has the same effect as
a serial schedule.

You are asked in this problem to determine whether a
schedule is serializable.

serializable.txt 10/10/06 09:04:01 2 of 3

Input

For each of several test cases:

 one line with the format:

 T S

 one or more schedule lines with a total of
 S transaction numbers

 T transaction description lines, each of at most
 80 characters

T is the number of transactions; S is the length of the
schedule; 1 <= T <= 20 and 1 <= S <= 100. Transactions
are numbered 1 through T, with transaction number 1
being described first. A transaction description line
consists of one or more operations separated by white-
space, where an operation is a pair of letters Rx or Wx,
and x is any lower case letter, that is, any object
name. The schedule consists of S whitespace separated
integers, each in the range from 1 through T, and the
schedule may be broken across several lines.

Input ends with an end of file.

Output

For each test case, one line containing just the word

 SERIALIZABLE

or just the word

 NON-SERIALIZABLE

Sample Input
------ -----

3 10
1 2 3 1 2 3 2 1 1 1
Rx Ry Rz Wx Wz
Ry Rx Wz
Ry Wy
3 10
1 2 3 1 2 3 1 1 2 1
Rx Ry Rz Wx Wz
Ry Rx Wz
Ry Wy

Sample Output
------ ------

SERIALIZABLE
NON-SERIALIZABLE

Remarks

Programmers expect transactions on a data base to be
executed using a serializable schedule, for if conflic-
ting operations from different transactions are inter-
leaved, it becomes nearly impossible to understand what
is happening.

serializable.txt 10/10/06 09:04:01 3 of 3

A typical data base system contains a scheduler that
employs one of several methods of rendering its sche-
dules serializable. One is strict two-phase locking,
in which a transaction locks objects before accessing
them, and does not release any locks until the end of
the transaction. Such a scheduler may get into deadlock
situations, in which transaction M is waiting for a lock
held by transaction N, and transaction N is at the same
time waiting for a lock head by transaction M. The
scheduler must then abort one of the transactions; i.e.,
the transaction must be stopped, any writes it has done
must be undone (which is easy if it never writes until
after it has all its locks), and all its locks must be
released (allowing other transactions to proceed). Then
the aborted transaction must be restarted.

Reference: Concurrency Control and Recovery in Database
Systems by Bernstein, Hadzilacos, and Goodman.

File: serializable.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Tue Oct 10 09:00:01 EDT 2006

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2006/10/10 13:04:01 $
 $RCSfile: serializable.txt,v $
 $Revision: 1.4 $

render.txt 10/10/06 08:56:35 1 of 2
Rendering Triangles
--------- ---------

In order to produce a picture, computer algorithms often
divide surfaces up into triangles each with its own
color. The triangles are then inserted into the image,
starting with triangles representing surface parts that
are farthest from the viewer, so that if two triangles
overlap, the nearer covers the overlapping part of the
farther triangle.

This problem asks you to do this for a simplified case.
The image consists of MxN pixels that are assigned
integer coordinates from (0,0) through (M-1,N-1). The
triangle vertices have integer coordinates, with vertex
(x,y) corresponding to pixel (x,y). The triangle colors
are simply upper case letters. The pixels correspond to
characters in a set of N lines each of M characters, so
the image can be easily printed. Each pixel prints as
its color. The period ‘.’ is used to denote white, so
the position of a white pixel can be easily ascertained.

A pixel is painted with the color of a triangle if the
pixel is inside OR ON THE BOUNDARY of the triangle.

To simplify the problem, no two triangles will have the
same color, and colors earlier in the alphabet are for
triangles farther from the observer. That is, if a
pixel receives several colors, it remembers only the one
that is latest in the alphabet.

Remark: This is the classical rendering problem solved
by graphics hardware. However, the hardware has to deal
with many more pixels and triangles than we do here. So
the hardware needs more efficient algorithms than you
need here.

Input

For each of several test cases, first a line with three
integers, M, N, and T in that order, and then T lines
each describing a triangle. Here 0 < M,N <= 50; 1 <= T
<= 26. Each of the triangle description lines has the
format

 C X1 Y1 X2 Y2 X3 Y3

where C is an upper case letter giving the color of the
triangle, and (X1,Y1), (X2,Y2), (X3,Y3) are the vertices
of the triangle. All vertex coordinates are integers,
but they may be outside the ranges 0..M-1 or 0..N-1,
i.e., the vertices may be outside the image.

Input numbers and color characters are separated by
whitespace. No two triangles have the same color.

Input ends with an end of file.

Output

For each test case, an empty line, followed by N lines
each of M characters.

Pixel (x,y) corresponds to the x+1’st character of the
y+1’st line, where 0 <= x < M and 0 <= y < N. If the
pixel has a color, the character is the color letter.
If the pixel has no color, the character is the period
‘.’.

The first output line is empty. There are no whitespace
characters in any output line.

render.txt 10/10/06 08:56:35 2 of 2

Note that (0,0) is the UPPER left pixel and (M-1,N-1) is
the LOWER right pixel.

Sample Input
------ -----

40 6 8
A 0 0 5 5 10 0
B 5 0 10 5 15 0
C 10 0 15 5 20 0
D 15 0 20 5 25 0
E 20 0 25 5 30 0
F 25 0 30 5 35 0
G 30 0 35 5 40 0
H 35 0 40 5 45 0
6 6 4
B -8 -10 12 10 12 -10
C -15 20 22 -20 22 -18
A -12 -10 8 10 -12 10
D 4 6 7 3 7 6

Sample Output
------ ------

[The first output line is empty.]

AAAAABBBBBCCCCCDDDDDEEEEEFFFFFGGGGGHHHHH
.AAAAABBBBBCCCCCDDDDDEEEEEFFFFFGGGGGHHHH
..AAAAABBBBBCCCCCDDDDDEEEEEFFFFFGGGGGHHH
...AAAAABBBBBCCCCCDDDDDEEEEEFFFFFGGGGGHH
....AAA..BBB..CCC..DDD..EEE..FFF..GGG..H
.....A....B....C....D....E....F....G....

..BBCB

...CBB
A.C.BB
AC...B
CAA...
AAAA.D

File: render.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Tue Oct 10 08:54:58 EDT 2006

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2006/10/10 12:56:35 $
 $RCSfile: render.txt,v $
 $Revision: 1.6 $

temporal.txt 10/11/06 10:35:04 1 of 4
Temporal Logic
-------- -----

PF (Past/Future) Temporal Logic is like propositional
calculus, except that instead of a proposition p being
either TRUE or FALSE, p has a possibly different value
of TRUE or FALSE at each of several times t. Thus a
proposition p is a function from times in some set T to
the 2-element set {TRUE, FALSE}. Alternatively, we may
view p as a subset of T, namely the set of all times for
which p is TRUE.

There is an order relation < on times, but there are no
fixed rules about how this relation behaves. That is,
given times t1 and t2, one would expect that one of
t1 < t2, or t1 = t2, or t1 > t2, but we do NOT require
this; several or none of these may be true. We even
permit a time t to be in its own future, i.e., t < t,
which means its also in its own past.

Pp means that proposition p was true at some time in the
past. Fp means that p will be true at some time in the
future. p(t) is the value, TRUE or FALSE, of proposi-
tion p at time t. Therefore

 (Pp)(t) = there exists an s < t such that p(s)

 (Fp)(t) = there exists an s > t such that p(s)

We define the logical expressions e of PF Temporal Logic
as

 e ::= p | q | r [propositions]
 | (˜e) [negation]
 | (e&e) [logical conjunction]
 | (e|e) [logical disjunction]
 | (Pe) [was true operation]
 | (Fe) [will be true operation]
 | constant

The classical logical operators ˜, &, and | are defined
‘pointwise’ for temporal logic:

 (˜p)(t) = ˜(p(t))
 (p&q)(t) = (p(t)&q(t))
 (p|q)(t) = (p(t)|q(t))

For standard propositional logic the constants are TRUE
and FALSE. But in temporal logic, constants are func-
tions mapping the set of times T to the values TRUE or
FALSE, and may be alternatively represented as the sub-
set of T on which the function takes the value TRUE.

For this problem we will take T to be the set of the
single digit numbers, 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.
We will write a subset of T by listing the digits in the
subset in parentheses. Thus (345) denotes the set of
times {3, 4, 5}, and () denotes the empty set of times.
These are our logical constants.

With this notation we find that

 (˜(23478)) = (01569)

 ((12345)&(456789)) = (45)

 ((123)|(345)) = (12345)

If in addition we assume that < is the standard order on
digits, then

 (P(35)) = (456789)

 (F(235)) = (01234)

temporal.txt 10/11/06 10:35:04 2 of 4

In general, < will be an arbitrary relation which we
define with a 10x10 matrix of characters. Each of the
10 rows corresponds to a row digit, R, going from 0 at
the top to 9 at the bottom. Each of the 10 columns
corresponds to a column digit, C, going from 0 at the
left to 9 at the right. The matrix position for R and
C is ‘X’ if R<C is true and ‘.’ if R<C is false. Thus
if the matrix is given with one row per line, the matrix

 .XXXXXXXXX
 ..XXXXXXXX
 ...XXXXXXX
 XXXXXX
 XXXXX
 XXXX
 XXX
 XX
 X

corresponds to the standard ordering of the digits.

Input

For each of several test cases:

 one line containing the name of the test case
 10 lines each of 10 characters containing the
 matrix representation of the < relation,
 as described above
 any number of non-empty lines each containing
 a logical expression
 an empty line (with no characters)

Input ends with an end of file.

There are no whitespace characters in any input line
except perhaps the test case name line.

The logical expressions either have no propositional
variables, or have ‘p’ and/or ‘q’ as their only proposi-
tional variables.

Output

For each test case:

 one line copying the name of the test case
 for each input logical expression, one line
 beginning with an exact copy of the logical
 expression and followed by one of:

 = <value of expression>
 is valid
 is satisfiable
 is unsatisfiable

 one empty line

If there is no proposition letter in the logical expres-
sion, output ‘ = <value of expression>’ after the logi-
cal expression, where the value of the expression is a
constant with the form of zero or more digits in paren-
theses; i.e., ‘(357)’. The digits in the parentheses
MUST BE IN ASCENDING ORDER.

If the logical expression contains propositions p or q,
then output ‘ is valid’ after the logical expression if
the logical expression is TRUE at ALL times for ALL
values of p and q. Such a formula is an axiom or
theorem of PF Temporal Logic for the given structure of
time (T,<).

temporal.txt 10/11/06 10:35:04 3 of 4

Otherwise if the logical expression is TRUE at ALL times
for SOME p value and SOME q value, then output ‘ is
satisfiable’ after the logical expression.

Otherwise output ‘ is unsatisfiable’ after the logical
expression. This means that for EVERY value of p and
EVERY value of q the expression is FALSE at SOME time.

For example, ‘((Fp)|(˜(F(Fp))))’ is an axiom that
is true for all times and values of p if and only if
< is a transitive relation on times. So only for
transitive < is this formula ‘valid’.

The ONLY whitespaces in any output line are those
surrounding ‘=’ and ‘is’, and those copied in the
test case name line. The last line output is empty.

Sample Input
------ -----

SAMPLE 1
.XXXXXXXXX
..XXXXXXXX
...XXXXXXX
....XXXXXX
.....XXXXX
......XXXX
.......XXX
........XX
.........X
..........
(˜(23478))
((12345)&(456789))
((123)|(345))
(P(35))
(F(235))
((Fp)|(˜(F(Fp))))
((˜p)&p)
(p&q)

SAMPLE 2
.XXXXXXXX.
..XXXXXXXX
...XXXXXXX
....XXXXXX
.....XXXXX
......XXXX
.......XXX
........XX
.........X
..........
((Fp)|(˜(F(Fp))))

[The last input line is an empty line.]

temporal.txt 10/11/06 10:35:04 4 of 4

Sample Output
------ ------

SAMPLE 1
(˜(23478)) = (01569)
((12345)&(456789)) = (45)
((123)|(345)) = (12345)
(P(35)) = (456789)
(F(235)) = (01234)
((Fp)|(˜(F(Fp)))) is valid
((˜p)&p) is unsatisfiable
(p&q) is satisfiable

SAMPLE 2
((Fp)|(˜(F(Fp)))) is satisfiable

[The last output line is an empty line.]

File: temporal.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Wed Oct 11 10:34:05 EDT 2006

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2006/10/11 14:35:04 $
 $RCSfile: temporal.txt,v $
 $Revision: 1.6 $

