pr obl ens- bospr e2005 10/ 19/ 05

02: 48: 20

1 of 1

Probl emrs | ndex Wed Cct 19 02:44: 05 EDT 2005

Easy Probl ens:

probl ens/isa
What are you?

pr obl ems/ exchanged
Typi ng errors.

probl ens/ st ri nghash
Random zi ng the input.

pr obl enms/ pseudop
Thr owi ng chal k.

Medium Di fficulty Problens:

probl ens/faireye
St andi ng exactly in between.

pr obl ens/ over | apgane
Sudden death by words.

Difficult Problemns:

probl ens/ chromati c
The Conputer Science col oring book

pr obl ens/ pr oof | abe
Al you need to know about ‘why?'.

| sa. t xt 10/ 17/05 00: 01: 09 1 of
Is It or Isn"t It?
R --- X is a W
The ‘Is A relation follows sone very sinple rules. For the answer should be ‘unknown’, and NOT ‘fal se’
exanmple, if

XisayY | nput

Yisaz e
t hen

Xxis a2 A sequence of test cases.
Here x is a proper noun, like *Jill’ or *‘Jack’, denoting Each test begins with a sequence of data |lines, each of
a particular object, and Y and Z are generic nouns, |ike the form

‘mamal ’ or ‘aninmal’, So the above

is |like

denoti ng properties.

Jack is a namm
manmal is a anim

therefore
Jack is a anim

all of which, of course, needs further editing to be
good English, but is good enough for the interna
t houghts of a conputer.

‘is a’
obj ects are named by single | ower
properties are named by single

You are then asked questions like

You are given sone data consisting of nothing but
relations in which al
case letters and al
upper case letters.

X is a Z?

whi ch according to the above data has the answer ‘true’
However, if you cannot deduce that something is true,
then it is not necessarily false, so given the above
data if you are asked

XxisayY
or the form
XisayY

where x can be replaced by any | ower case |letter and
X and Y can be replaced by any upper case letters.

Following the data lines is a sequence of question
l'ines, each of the form

X is aY?
or the form
Xis a ¥Y?

where x can be replaced by any | ower case |letter and
X and Y can be replaced by any upper case letters.

The question lines are followed by a single end |ine

containing just ‘.’, which ends the test case

The input terminates with an end of file.

| sa. t xt 10/ 17/05 00: 01: 09 2 of
To make input easy, each data line is exactly 8 charac- Qut put

ters, each question line exactly 9 characters, charac- | ------

ters 2 through 7 of each line are * is a ', characters

1 and 8 of each line are letters, and character 9 of For each test case, a sequence of answer |ines that

each question line is “?". Character 8 nust be upper correspond to the test case question lines, followed by
case, while character 1 may be | ower or upper case. a single end |ine containing nothing but °

Al'so to make the algorithmeasier, each test case wll An answer |ine contains nothing but ‘true’ or ‘unknown’

be such that if you can deduce that ‘X is a Y is true,
then you CANNOT al so deduce that ‘'Y is a X is true.
Thus there are no ‘loops’ in the deductions.

Exanpl e | nput

XxisaP
Pis aQ
Qis aR
Ris a S
Pis aM
Mis a N
X is a P?
X is a S?
Ris a P?
Qis a N?
Bis aC
Bis aD
Bis aE
Xxis aD
Cis a FE?
Eis a B?
X is a B?

according to whether or not the statement in the corres-
pondi ng question line can be deduced fromthe data or
not .

Exanpl e Qut put

true
true
unknown
unknown

unknown
unknown
unknown

Fil e:
Aut hor :
Dat e:

i sa.txt
Bob Wl t on <wal t on@leas. har var d. edu>
Mon Cct 17 00: 00: 54 EDT 2005

The aut hors have placed this file in the public donain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $

$Dat e: 2005/10/24 07:36:22 $
$RCSfi |l e: probl ens-bospre2005. ps,v $
$Revision: 1.1 $

exchanged. t xt

10/ 18/ 05 10:07:33

1 of 1

Exchanged Comnpare

Oten times people will mistype a word by exchangi ng
adj acent letters. You are asked to wite a conpare
function which returns true if and only if a first word
equal s a second word after zero or nore pairs of non-
overlapping letters in the second word are exchanged.

A sequence of test cases, each a single |ine containing
two words. The words are separated by spaces and tabs.
The input ends with an end of file.

The words contain only | ower case letters, and no line
is longer than 80 characters.

For each test case, one line containing ‘true’ if the
two i nput words are equal after non-adjacent letter pair
exchanges, and ‘fal se’ otherw se.

Exanpl e | nput

hello hello
hell o hel o
hel |l o heol

hello ehllo
hell o ehl o
hell o hl eo
hell o hel o

Exanmpl e Qut put

true
true
fal se
true
true
true
fal se

File: exchanged. t xt
Aut hor : Bob Wal t on <wal t on@leas. harvard. edu>
Dat e: Tue Cct 18 10: 05: 24 EDT 2005

The aut hors have placed this file in the public domain
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $

$Dat e: 2005/10/24 07:36:22 $
$RCSfil e: probl ens-bospre2005. ps,v $
$Revision: 1.1 $

stri nghash. t xt 10/ 19/ 05

07: 18: 58 1 of

String Hashing

It is often desirable to conpute a hash code froma
character string. One good way of doing this is to use
the function:

hash = hash(N)

hash(n) = P * hash(n-1) + c[n-1] nmod Mif n >0
hash(0) = 0
wher e

N is the nunber of characters in the string

c[0], c[1], ..., c[N-1] are the characters of the
string

0 <=c[i] <256 for all 0 <=i <N

Mis an integer > 0, the nodul us of computation

Pis a nunber prime to M

hash(n) is the hash code of the first n characters
of the string

hash is the hash code of the entire string

CGood values of P and Mare

2**32

M
P 33 or

65599

Conputing nmodul o 2**32 is fast because it is just trun-
cating to 32 bits. Miltiplying by 33 = 2**5 + 2**(Q can
be done quickly by one shift and one addition. Milti-

plying by 65599 = 2**16 + 2**6 - 2**0 can be done by 2

shifts, one addition, and one subtraction

You have been asked to conmpute hash val ues for sone
strings. However, to be absolutely sure there are no
arithmetic overfl ow problens, we are sinplifying the
probl em by requiring

0<P< M< 2**15

Al so, we do NOT require that Mand P be relatively
prine.

I nput

For each test case, one |ine containing

M P STRI NG

in the given order. M P, and STRING are separated by
whi t espace consisting of spaces and tabs. Mand P are
integers, and STRING is a sequence of at nmpbst 80 non-
whi t espace characters.

The input termnates with an end of file.

For each test case, one |ine containing

M P STRI NG HASH
which copies M P, and STRING fromthe input and outputs

the ‘hash’ value conputed for the STRI NG character
string using Mand P

stringhash. t xt 10/19/05 07:18:58 2 of

Exanmpl e | nput File: st ri nghash. t xt
———————————— Aut hor : Bob Wl ton <wal t on@leas. harvard. edu>
Dat e: Wed Cct 19 07:16: 00 EDT 2005
10000 100 A
10000 100 B The aut hors have placed this file in the public domain
10000 100 C they make no warranty and accept no liability for this
10000 100 D file.
10000 100 AB
10000 100 CD RCS Info (may not be true date or author):
32000 33 AB
32000 33 CD $Aut hor: walton $
32000 33 ABCDEFGH J $Dat e: 2005/ 10/ 24 07:36:22 $
32000 33 BACDEFGHIJ $RCSfil e: probl ens-bospre2005. ps,v $
32000 33 9% @bc++=903#?..." $Revision: 1.1 $

10000 100 D 68

10000 100 AB 6566

10000 100 CD 6768

32000 33 AB 2211

32000 33 CD 2279

32000 33 ABCDEFGH J 5207

32000 33 BACDEFGHI J 12919

32000 33 % @bc++=903#?..." 11238

pseudopi . t xt 10/ 19/ 05

07: 20: 22 1 of

Pseudo- Random Conput ati on of PI

One of the classic denonstrations of probability is the

following. The professor draws a | arge square on the
bl ackboard, and draws its inscribed circle. Then stand-
ing with her back to the board, she throws pieces of

chalk at the square. After this she counts the number M
of hits in the circle and the number N >= Mof hits in
the square (including those in the circle), and denon-
strates that M N is about PI/4. This is because PI/4 is
the area of the inscribed circle divided by the area of
the square, and the probability of hitting any snal

part of the square is roughly identical to hitting any
other small part of the square.

You have been asked to simulate the denmonstration in the
conputer. The square is to be sinulated by the unit
square in the XY-plane, [0, 1] x[0, 1], which has (0,0) as
its lower left corner and (1,1) as its upper right
corner. To simulate throwi ng the chalk, two random
integers X and Y are ‘drawn uniformy’ (see bel ow for
details) fromthe range 0 .. S-1, where S > 0 is sone

integer. Then the coordi nates where the chal k strikes
are set at ((X + 0.5)/S, (Y + 0.5)/S). These are
i nside the square, so all our ‘throws’ count toward N.

They are inside the circle, and count toward M if and
only if the chalk strikes at a distance of 0.5 or |ess
fromthe center of the circle, (0.5, 0.5).

Thus if S = 100 and the first two random i ntegers drawn
are 37 and 69, the chalk point is (0.375,0.695) which

is distance 0.23 from (0.5,0.5), and is therefore in the
circle and counts toward both M and N

Drawi ng Random Nunber s

You are asked to draw pseudo-random nunbers according to
the equati on:

RANDOM = (RANDOM * MULTI PLI ER) nbd MODULUS

where RANDOM i s the val ue of the pseudo-random numnber,
the equation steps fromthe the | ast pseudo-random
nunber to the next pseudo-random number, and MJLTI PLI ER
and MODULUS are fixed values that determ ne the pseudo-
random nunber sequence.

To get started, RANDOMis initialized to a value called
SEED. The first pseudo-random nunber in the sequence
is not SEED, but the first nunber after SEED in the
sequence.

I f MULTIPLI ER and MODULUS have good values for this
purpose, the resulting sequence of nunbers appears when
tested to be truly random and uniformy distributed in
the range from1 through MODULUS - 1. Uniformy dis-
tributed nmeans all values in this range are equally

probabl e. The choices
MULTI PLIER = 7**5 = 16807
MODULUS = 2**31 - 1 = 2147483647

are very good for this purpose.

For exanple, if MJLTIPLIER and MODULUS are as j ust
given, and the SEED is 374332679, then the first two
random nunbers are 1429733890 and 1342962947.

Aremaining difficulty is howto convert uniformy
distributed integers from1l through MODULUS - 1 to
uniformy distributed integers fromO through S-1. An
easy solution, which we will adopt, is to set

pseudopi . t xt 10/19/05 07:20: 22 2 of
S = MODULUS - 1 The sinmulation is to be done with RANDOM initialized to
SEED (SEED is NOT the first pseudo-random nunber) and
and subtract 1 from each value of RANDOM Thus ‘a chal k S = MODULUS - 1.
throw is simulated by executing
RANDOM = (MULTI PLI ER * RANDOM) nod MODULUS Qut put
X=RANDOM- 2 e

X=(X+05)1/Ss

RANDOM = (MJULTI PLI ER * RANDOM) nmpd MODULUS
Y RANDOM - 1

Y=(Y+05)/ S

toyield (X Y) in the unit square.

| mpl ement ati on of the above algorithmrequires integers
| onger than 32 bits. In Cor C++ you can use doubl es
and the fnod function. O you can use ‘long long’s and
the % operator. In JAVA you can use ‘long’s and the %

operator. Renenber, ‘long’s are only 32 bits in C and
C++, but are 64 bits in JAVA. ‘long long's are 64 bhits
in C and Ct+.

I nput

For each of several test cases, one |line containing

four nunbers in the order

N MULTI PLI ER MODULUS SEED
The nunbers may be separated by spaces or tabs. Al
i nput nunbers are positive integers bel ow 2**31 (but
some products conputed by intermedi ate conmputations wll
be I arger).

I nput ends with an end of file.

For each test case one line containing five nunmbers in
the order:

N MULTI PLI ER MODULUS SEED PI _ESTI MATE

where the first four nunbers are copied fromthe input,
and Pl _ESTI MATE equal s 4*M N expressed as a decina

nunber with exactly 5 deci mal pl aces.
Exanpl e | nput

100 16807 2147483647 374332679
1000 16807 2147483647 374332679
10000 16807 2147483647 374332679
100000 16807 2147483647 374332679
1000000 16807 2147483647 374332679

Exanpl e Qut put

100 16807 2147483647 374332679 3.20000
1000 16807 2147483647 374332679 3.13600
10000 16807 2147483647 374332679 3. 15960
100000 16807 2147483647 374332679 3. 13888
1000000 16807 2147483647 374332679 3. 14167

pseudopi . t xt 10/19/05 07:20: 22 3 of 3
File: pseudopi . t xt

Aut hor : Bob Wal t on <wal t on@leas. harvard. edu>

Dat e: Wed Oct 19 07:19: 20 EDT 2005

The aut hors have placed this file in the public domain
they make no warranty and accept no liability for this

file.

RCS Info (may not be true date or author):

$Aut hor: walton $

$Dat e: 2005/10/24 07:36:22 $
$RCSfil e: probl ens-bospre2005. ps,v $
$Revision: 1.1 $

faireye. txt 10/ 18/ 05 11:30:23 1 of
Fair Eye's Secret

————————————————— Qut put

Fair Eye, the referee, is known for naking correct

calls. Scooper, the news reporter, thinks he has figured For each case, a single line containing the 2 numbers

out the secret of Fair Eye's success. Just before

making a call, Fair Eye carefully positions hinself Xy

at an equal distance fromany place where an event that
needs to be called nmay occur

To test his theory Scooper uses Sky Camto neasure the

| ocation F of Fair Eye and the |ocations P1, P2, P3 of

pl aces where events that may need to be call ed occur

For sonme reason there are al nost al ways three such

pl aces, and Scooper ignores the cases where there are
not three. To test his theory Scooper wants to compute
for every three places P1, P2, and P3 the exact |ocation
of the point C equidistant fromthese three places, so
that C may be conpared to F, where Fair Eye positions

hi nsel f.
Mat hematicians call C the circuncenter of P1, P2, and
P3, or of the triangle whose vertices are P1, P2, and

P3. It is the center of the circunscribed circle of

that triangle.

For each case, a single line containing the 6 nunbers

x1 yl x2 y2 x3 y3
defining three points: P1 = (x1,yl),

P3 = (x3,y3). The 6 nunbers are rea
be negative).

P2 = (x2,y2), and
nunbers (and nmay

An end of file term nates the input.

defining the circuncenter C = (x,y) of the three points
P1, P2, P3.

Both x and y nust be printed with exactly 3 decima
pl aces.

You may assune that doubl e precision floating point
nunbers will suffice to conpute C with adequate
precision, and that the three points are not so close
to being co-linear that there will be computation

pr obl ens.

Exanpl e | nput

faireye. txt 10/ 18/ 05 11:30:23 2 of 2
File: faireye. txt

Aut hor : Bob Wal t on <wal t on@leas. harvard. edu>

Dat e: Tue Cct 18 11:29:13 EDT 2005

The aut hors have placed this file in the public domain
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $

$Dat e: 2005/10/24 07:36:22 $
$RCSfil e: probl ens-bospre2005. ps,v $
$Revision: 1.1 $

over | apgane. t xt 10/ 19/ 05

07: 26: 51 1 of

The Overl ap Gane

The Overlap Gane is played with a set of words that are
used to create a string of letters. The first player
picks a word fromthe set and puts it on the board,
creating the string. Thereafter each player picks a
word and puts it at the end of the string, BUT, the

begi nning of the word nust overlap the end of the string
by one or nore letters. The word is placed so its over-
lapping letters actually overlap those at the end of the
string. Each nove nust increase the nunber of letters
on the board.

Thus if a ganme starts with the words
THE EATEN ENCHANTMVENT

the first nove could result in
THE

the second nove could result in
THEATEN

and the third nmove could result in
THEATENCHANTVENT

However, a second nove resulting in

THENCHANT MENT

is also possible, and then there could be no third nove.

There are only two players in this gane, and the person

to nove |ast |oses. Play stops only when no nore words
can be added to the string.

You have been asked to assist a player
Wi nni ng noves.

by determ ning

For each case, a list of words followed by the mark **’
The words and nmarks are separated by whitespace, where
any conbi nation of spaces, tabs, and line ends are
consi dered to be whitespace.

Al words consist of just upper case letters. There are
at nost 100 words in a case, and each word is at npst
20 letters.

An end of file term nates the input.

For each case, a single line containing just the (upper
case) words the first player can play first to force a

win. The words are separated by spaces.

If there are no words that will result in a win, the
single line should instead contain just |ower case
‘lose’. This indicates the first player nust lose if

the second player plays optinally.

over | apgane. t xt 10/ 19/ 05

07: 26: 51

2 of 2

Exanmpl e | nput

THE EATEN ENCHANTMENT *

THE EATEN ENCHANTMENT ENTI CES *

THI'S H STORY | S YI PPING SILLY *

AB BC CD DE EA *

HI STORY YES SENSI BLE YEOAL ELOQUE LONG *

THE ENVELOP COPERATES TESTI NG GREAT
EATERI ES POST *

Exanpl e Qut put

| ose

EATEN ENCHANTNMENT

H STORY SILLY

| ose

SENS| BLE YEOW

THE ENVELOP OPERATES

File: over | apgane. t xt
Aut hor : Bob Wal t on <wal t on@leas. harvard. edu>
Dat e: Wed Cct 19 07:24:25 EDT 2005

The aut hors have placed this file in the public donain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $

$Date: 2005/10/24 07:36:22 $
$RCSfil e: probl enms-bospre2005. ps,v $
$Revision: 1.1 $

chromatic. t xt 10/ 17/05 03:06: 04 1 of
Chromati c Pol ynom al s
———————————————————— I nput
G ven an undirected graph G (a set of vertices and
edges) let P(G n) be the number of ways to color Gwth For each of several test cases, a specification of a
n colors so no adjacent vertices have the sane col or. graph G as foll ows:
If e is an edge of G between vertices x and y, then A line containing the nunber V of vertices.
1 <=V <= 10.
P(G n) = nunber of ways to color G such that no 2

adj acent vertices OTHER THAN x or y have V lines each containing V binary digits

the sane col or (*0’s and ‘1's).

- nunber of ways to color G such that no 2 Vertices are identified by integers i, 1 <=1i <= V.
adj acent vertices OTHER THAN x or y have Lines of digits are nunbered 1, 2, 3, fromthe first
the same color, AND x and y do have the line to the last line. Digits in a line are nunbered
same col or 1, 2, 3, fromleft to right.

=P(G,n) - P(G’',n) For 1 <=i,j] <=V, digit j of linei is ‘1 if vertex

i is adjacent to vertex j, and ‘0’ otherwise. Digit
where G is the graph nmade from G by del eti ng edge e, j of line i equals digit i of linej, and digit i of
and G’ is the graph made from G by nerging x and vy, linei is ‘0 (a vertex is NOT adjacent to itself).

deleting e, and deleting any duplicates of edges in

the resulting graph. That is, if in Gel is an edge
fromx to z and e2 is an edge fromy to z then in G’

x and y becone the same vertex so el and e2 are now the
same edge and one of these nust be deleted to avoid
dupl i cat e edges.

G and G’ both have fewer edges than G By repeating
this process you can reduce the problemto conputing
the nunber of ways of coloring a graph with no edges
with n colors. This is just n**d, where d is the nunber
of vertices in the graph with no edges.

Therefore P(Gn) is a polynomal in n of degree |Q§,
where |§ is the nunber of vertices in G You are asked
to conpute P(Gn) for various G

No |ines contain any spaces.
with an end of file.

The input term nates

For each case, a single line containing V+1 integers,
which are the coefficients of P(Gn) from high order
to | ow order.

chromatic. t xt

10/ 17/ 05 03: 06: 04 2 of

Exanmpl e | nput

000
000
000

3

011
101
110

5
01000
10100
01010
00101
00010
5
01001
10100
01010
00101
10010

Exanpl e Qut put

File: chromati c. t xt
Aut hor : Bob Wal ton <wal t on@leas. har vard. edu>
Dat e: Mon Cct 17 03:05:49 EDT 2005

The aut hors have placed this file in the public domain
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $

$Dat e: 2005/10/24 07:36:22 $
$RCSfil e: probl ens-bospre2005. ps,v $
$Revision: 1.1 $

pr oof | abel . t xt 10/ 18/ 05

11: 38: 43 1 of

Pr oof Labeling

The following is an example of a proof in alinmted
| ogi c | anguage with just the inplication operator =>
and propositional variables denoted by single upper
case letters.

z ((A=>B) =>B) assunption

y (B=>A) assunpti on

X (A=>B) assunpti on

1 B nodus ponens z X
2 A nodus ponens y 1
3 ((A=>B) =>A) di scharge x 2

a (((A=>B) =>A) =>A) axi om

4 A nodus ponens a 3
5 ((B=>A) =>A) di scharge y 4

6 (((A=>B) =>B) =>((B=>A) =>A)) di scharge z 5

Here each line is an inference.
| ower case letters or integers. After the name cones

the logical fornula. After that, the reason the fornula
is avalid inference (e.g., ‘axiom or ‘discharge z 5).

I nferences are naned by

Assunptions and axi ons are naned by | ower case letters,
whil e other inferences are naned by integers. Different
i nferences have distinct names.

A logical fornmula is either an atom denoted by a single
upper case letter, or an inplication, which has the
form (F1=>F2), where F1 and F2 are any | ogical fornulae.

There are four kinds of inferences.
Axi oms. These are just naned with a | ower case letter.
The only axi om needed by our limted | ogic | anguage is

Pierce’s axiom which is any formula of the form

(((F1=>F2)=>F1)=>F1). (F1=>F2) is used as a stand-in
for ‘not F1', since negation is not in our limted
| anguage, so Pierce’'s axiomjust says that if you can

prove F1 from‘not F1', then F1 is true.

Assunptions. These are naned by a | ower case letter.
They nmust be discharged. Avoiding the use of

undi scharged assunptions in a proof is a subtle point
that will be elaborated on in the notes bel ow

Modus Ponens. This is the rule of logic that says given
(F1=>F2) and F1 you can infer F2. A nodus ponens infer-
ence is nanmed by an integer. Let F2 be the |ogica
formula of the inference. Then the reason of the infer-
ence nust have the form ‘nodus ponens N1 N2’ where N1
nanes a previous inference whose |ogical fornmula has the
form (F1=>F2) for some logical fornula F1, and N2 nanes
a previous inference whose |logical fornula is F1.

Di scharge. This is how you discharge assunptions. A
di scharge inference has an integer nanme and a | ogi ca
formula of the form (F1=>F2). |Its reason has the form
‘discharge N1 N2' where N1 names a previous inference
that is an assunption with logical formula F1, and N2
nanes a previous inference with |ogical fornmula F2.

pr oof | abel . t xt 10/ 18/ 05

11: 38: 43 2 of

Inferences in a proof can be given | abels that

conpl etely describe how the inference was arrived at.
When | abel s are added on a line after each inference in
the above exanple, the exanple |l ooks like this:

z ((A=>B) =>B) assunption

z

y (B=>A) assunpti on
y

X (A=>B) assunpti on
X

1 B nodus ponens z X
(zx)

2 A nodus ponens y 1
(y(zx)) _

3 ((A=>B) =>A) di scharge x 2

(\x. (y(zx))) .
a (((A=>B) =>A) =>A) axi om
a

4 A nodus ponens a 3

(a(\x. (y(zx)))) _

5 ((B=>A) =>A) di scharge y 4
(\y. (a(\x. (y(zx))))) .

6 (((A=>B) =>B) =>((B=>A) =>A)) di scharge z 5
(

\z. (\y. (a(\x. (y(zx))))))

Note that inference nanmes and inference | abels are
di fferent things, though for assunptions and axi ons
happen to be equal. Labels are computed as foll ows:

t hey

The | abel of an axiominference is the nane of
a |l ower case letter.

AXi om
the i nference,

Assumption. The | abel of an assunption inference is the
nane of the inference, a |ower case letter.
Modus Ponens. The | abel of a ‘nbdus ponens N1 N2’

inference is (XY) where X is the |abel of inference N1

and Y is the | abel of inference N2.

Di scharge. The | abel of a ‘discharge N1 N2' inference
is (\X.Y) where Xis the label of the inference N1, and
is always a lower case letter, as Nl is an assunption,

while Y is the |label of the inference N2.

We have told you everything you need to know to do this
problem but there is nore interesting stuff in the
notes at the end.

A sequence of inferences, one per |ine, wthout any

| abel s. Each inference consists of a name, a | ogica
fornmula, and a reason. There are no spaces inside the
| ogi cal formula. Any anobunt of whitespace nmay be used

to separate the nanme, the logical fornula, the reason

and the separate parts of the reason
An end of file terminates the input.

No two inferences have the same nane. Nanes are al
| ower case letters or integers in the range from1l
through 1000. No inference line is |longer than 80
characters.

For each inference print the exact input
the inference foll owed by one additiona
the | abel of the inference indented by 4 spaces.
| abel must not contain spaces.

i ne containing
i ne containing
The

pr oof | abel . t xt 10/ 18/ 05

11: 38: 43

3 of 5

However, you nust perform checks on nbdus ponens and

di scharge inferences. |If the checks do not pass, you
must output ‘$ as the label of the inference. This

| abel may then propagate into the | abels of other

i nferences that use the inference which did not check

The check for a ‘nobdus ponens N1 N2’ inference with
logical formula F2 is that inference N1 has a | ogica
formula of the form (F1=>F2) and inference N2 has the
| ogi cal formula F1.

The check for a ‘discharge NL N2' inference is that
it has a logical fornmula of the form (F1=>F2),
inference NL is an assunption (check this) with

| ogi cal fornula F1, and inference N2 has | ogica
formul a F2.

The input data will be such that no label will be |onger
than 76 characters (so no output line will be |onger
than 80 characters). The N1 and N2 above will al ways
nanme previous inferences (though not necessarily those
that will pass the checks for formula or reason).

Exanpl e | nput

z ((A=>B) =>0)

y ((B=>A)=>(Q)

X (C=>B)

w (B=>A)

1 C

2 B

3 ((B=>A) =>B)

a (((B=>A) =>B) =>B)
4 B

\ A

5 (A=>B)

6 C

7 ((C=>B)=>0)

b (((C=>B)=>C)=>C)
8 C

9 (((B:>A) :>C) :>C)
10 (((A=>B) =>C) =>(((B=>A) =>C) =>Q))
11 (A=A

12 C

13 B

14 (A=>B)

15 ((((B=>A)=>B) =>B) =>B)

Exanpl e Qut put

z ((A=>B)=>Q)
Z
y ((B=>A)=>Q)

y

X (C=>B)
X

w (B=>A)

w

assunpti on
assunpti on
assunption
assunption
nodus ponens y
nodus ponens X
di scharge w 2
axi om

nodus ponens a
assunption

di scharge v 4
nodus ponens z
di scharge x 6
axi om

nodus ponens b
di scharge y 8
di scharge z 9
di scharge v v
nodus ponens v
nodus ponens X
di scharge v 13
di scharge a 13

assunption
assunpti on
assunpti on

assunption

w

=

11
12

pr oof | abel . t xt

10/ 18/ 05 11:38:43 4 of

10

11

12

13

14

15

C

(yw)

B

(x(yw)

((B=>A) =>B)

(\w. (x(yw)))
(((B=>A) =>B) =>B)
a

B

(a(\w (x(yw))))
A

\%
(A=>B)
(C\V-(a(\W-(X(yW)))))

(z(\v. (a(\w (x(yw))))))
((C=>B) =>Q)

(\x. (z(\v. (a(\w (x(yw)))))))
(((C=>B)=>0) =>0Q)
b

C

(b(\x. (z(\v. (a(\w. (x(yw)))))))
(((B=>A) =>C) =>0)

nodus ponens y w
nodus ponens x 1
di scharge w 2
axi om

nodus ponens a 3
assunpti on

di scharge v 4
nodus ponens z 5
di scharge x 6
axi om

nodus ponens b 7

di scharge y 8

(\y. (b(\x. (z(\v. (a(\w. (x(yw)))))))))

(((A=>B) =>C) =>(((B=>A) =>C) =>Q))

di scharge z 9

(\z. (\y. (b(\x. (z(\v. (a(\w. (x(ywW))))))))))

(A=>A)
(\v.v)

C

$

B

(x$)
(A=>B)
(\v.(x9%))

((((B=>A) =>B) =>B) =>B)
$

di scharge v v
nodus ponens v 11
nodus ponens x 12
di scharge v 13

di scharge a 13

An assunption nane X is discharged in a label if it only
occurs inside subexpressions of the | abel that have the
form(\X...). That is, the \ X discharges all X s in

the subexpression it begins.

Thus z is discharged in (a(\z.(xz))) but is not
di scharged in (z(\z.(xz))) as in the latter the first
z is outside any (\z...)

In a valid proof of a theorem all assunptions nust be
di scharged. Notice we did NOT ask you to check this.

It is possible to prove the foll ow ng:

If a formula F has a proof with label ((\X Y)Z) then
it has a proof with label Y[X=Z], which denotes the
label Y with all undischarged Xs in it replaced by Z,
provi ded that Z has no undi scharged assunpti on nanes
that become di scharged when Z is inserted into Y.

Thus the | abel of a proof can be ‘reduced by the
‘reduction rule” ((\XY)2) --> Y[X=Z].

Inference | abels as we have introduced them have exactly
the same syntax as formula' s in | anbda cal cul us, where
we have used the backslash \ in place of the G eek
letter ‘lanbda’. Furthernore, the reduction rule we
have just introduced for inference labels is exactly the
main reduction rule for the | anbda cal cul us, beta reduc-
tion, and our word ‘discharged” corresponds exactly to
the | anbda cal cul us word ‘ bound’

It can al so be shown that the other reduction rules for
the | anbda cal cul us, al pha reduction and eta reduction
are valid for inference |labels. Thus there is an exact
1-1 correspondence between inference |abels and | anbda
calculus. This is called the Curry-Howard |sonorphism

pr oof | abel . t xt 10/ 18/ 05

11: 38: 43

5 o0of 5

It further turns out that the relation between the

| ogi cal formula of an inference and the | abel of the
inference is exactly the same as the relation between
the type of a | anbda cal culus formula and the formula.
Thus | ogical formula can be read as the types of the

| abel s of their proofs.

File: proof | abel . t xt
Aut hor : Bob Wal t on <wal t on@leas. har var d. edu>
Dat e: Tue Cct 18 11:33:00 EDT 2005

The aut hors have placed this file in the public donain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

$Aut hor: walton $

$Dat e: 2005/10/24 07:36:22 $
$RCSfil e: probl ens-bospre2005. ps,v $
$Revision: 1.1 $

