
problems-bospre2005 10/19/05 02:48:20 1 of 1
Problems Index Wed Oct 19 02:44:05 EDT 2005

Easy Problems:

 problems/isa
 What are you?

 problems/exchanged
 Typing errors.

 problems/stringhash
 Randomizing the input.

 problems/pseudopi
 Throwing chalk.

Medium Difficulty Problems:

 problems/faireye
 Standing exactly in between.

 problems/overlapgame
 Sudden death by words.

Difficult Problems:

 problems/chromatic
 The Computer Science coloring book.

 problems/prooflabel
 All you need to know about ‘why?’.

isa.txt 10/17/05 00:01:09 1 of 2
Is It or Isn’t It?
-- -- -- ----- ---

The ‘Is A’ relation follows some very simple rules. For
example, if

 x is a Y
 Y is a Z
then
 x is a Z

Here x is a proper noun, like ‘Jill’ or ‘Jack’, denoting
a particular object, and Y and Z are generic nouns, like
‘mammal’ or ‘animal’, denoting properties. So the above
is like

 Jack is a mammal
 mammal is a animal

therefore

 Jack is a animal

all of which, of course, needs further editing to be
good English, but is good enough for the internal
thoughts of a computer.

You are given some data consisting of nothing but ‘is a’
relations in which all objects are named by single lower
case letters and all properties are named by single
upper case letters. You are then asked questions like

 x is a Z?

which according to the above data has the answer ‘true’.
However, if you cannot deduce that something is true,
then it is not necessarily false, so given the above
data if you are asked

 x is a W?

the answer should be ‘unknown’, and NOT ‘false’.

Input

A sequence of test cases.

Each test begins with a sequence of data lines, each of
the form

 x is a Y

or the form

 X is a Y

where x can be replaced by any lower case letter and
X and Y can be replaced by any upper case letters.

Following the data lines is a sequence of question
lines, each of the form

 x is a Y?

or the form

 X is a Y?

where x can be replaced by any lower case letter and
X and Y can be replaced by any upper case letters.

The question lines are followed by a single end line
containing just ‘.’, which ends the test case

The input terminates with an end of file.

isa.txt 10/17/05 00:01:09 2 of 2

To make input easy, each data line is exactly 8 charac-
ters, each question line exactly 9 characters, charac-
ters 2 through 7 of each line are ‘ is a ’, characters
1 and 8 of each line are letters, and character 9 of
each question line is ‘?’. Character 8 must be upper
case, while character 1 may be lower or upper case.

Also to make the algorithm easier, each test case will
be such that if you can deduce that ‘X is a Y’ is true,
then you CANNOT also deduce that ‘Y is a X’ is true.
Thus there are no ‘loops’ in the deductions.

Example Input
------- -----

x is a P
P is a Q
Q is a R
R is a S
P is a M
M is a N
x is a P?
x is a S?
R is a P?
Q is a N?
.
B is a C
B is a D
B is a E
x is a D
C is a E?
E is a B?
x is a B?
.

Output

For each test case, a sequence of answer lines that
correspond to the test case question lines, followed by
a single end line containing nothing but ‘.’.

An answer line contains nothing but ‘true’ or ‘unknown’,
according to whether or not the statement in the corres-
ponding question line can be deduced from the data or
not.

Example Output
------- ------

true
true
unknown
unknown
.
unknown
unknown
unknown
.

File: isa.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Mon Oct 17 00:00:54 EDT 2005

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2005/10/24 07:36:22 $
 $RCSfile: problems-bospre2005.ps,v $
 $Revision: 1.1 $

exchanged.txt 10/18/05 10:07:33 1 of 1
Exchanged Compare

Often times people will mistype a word by exchanging
adjacent letters. You are asked to write a compare
function which returns true if and only if a first word
equals a second word after zero or more pairs of non-
overlapping letters in the second word are exchanged.

Input

A sequence of test cases, each a single line containing
two words. The words are separated by spaces and tabs.
The input ends with an end of file.

The words contain only lower case letters, and no line
is longer than 80 characters.

Output

For each test case, one line containing ‘true’ if the
two input words are equal after non-adjacent letter pair
exchanges, and ‘false’ otherwise.

Example Input
------- -----

hello hello
hello helol
hello heoll
hello ehllo
hello ehlol
hello hleol
hello helo

Example Output
------- ------

true
true
false
true
true
true
false

File: exchanged.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Tue Oct 18 10:05:24 EDT 2005

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2005/10/24 07:36:22 $
 $RCSfile: problems-bospre2005.ps,v $
 $Revision: 1.1 $

stringhash.txt 10/19/05 07:18:58 1 of 2
String Hashing
------ -------

It is often desirable to compute a hash code from a
character string. One good way of doing this is to use
the function:

 hash = hash(N)
 hash(n) = P * hash(n-1) + c[n-1] mod M if n > 0
 hash(0) = 0

where

 N is the number of characters in the string
 c[0], c[1], ..., c[N-1] are the characters of the
 string
 0 <= c[i] < 256 for all 0 <= i < N
 M is an integer > 0, the modulus of computation
 P is a number prime to M
 hash(n) is the hash code of the first n characters
 of the string
 hash is the hash code of the entire string

Good values of P and M are

 M = 2**32
 P = 33 or 65599

Computing modulo 2**32 is fast because it is just trun-
cating to 32 bits. Multiplying by 33 = 2**5 + 2**0 can
be done quickly by one shift and one addition. Multi-
plying by 65599 = 2**16 + 2**6 - 2**0 can be done by 2
shifts, one addition, and one subtraction.

You have been asked to compute hash values for some
strings. However, to be absolutely sure there are no
arithmetic overflow problems, we are simplifying the
problem by requiring

 0 < P < M < 2**15

Also, we do NOT require that M and P be relatively
prime.

Input

For each test case, one line containing

 M P STRING

in the given order. M, P, and STRING are separated by
whitespace consisting of spaces and tabs. M and P are
integers, and STRING is a sequence of at most 80 non-
whitespace characters.

The input terminates with an end of file.

Output

For each test case, one line containing

 M P STRING HASH

which copies M, P, and STRING from the input and outputs
the ‘hash’ value computed for the STRING character
string using M and P.

stringhash.txt 10/19/05 07:18:58 2 of 2

Example Input
------- -----

10000 100 A
10000 100 B
10000 100 C
10000 100 D
10000 100 AB
10000 100 CD
32000 33 AB
32000 33 CD
32000 33 ABCDEFGHIJ
32000 33 BACDEFGHIJ
32000 33 %^@abc++=903#?..."

Example Output
------- ------

10000 100 A 65
10000 100 B 66
10000 100 C 67
10000 100 D 68
10000 100 AB 6566
10000 100 CD 6768
32000 33 AB 2211
32000 33 CD 2279
32000 33 ABCDEFGHIJ 5207
32000 33 BACDEFGHIJ 12919
32000 33 %^@abc++=903#?..." 11238

File: stringhash.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Wed Oct 19 07:16:00 EDT 2005

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2005/10/24 07:36:22 $
 $RCSfile: problems-bospre2005.ps,v $
 $Revision: 1.1 $

pseudopi.txt 10/19/05 07:20:22 1 of 3
Pseudo-Random Computation of PI

One of the classic demonstrations of probability is the
following. The professor draws a large square on the
blackboard, and draws its inscribed circle. Then stand-
ing with her back to the board, she throws pieces of
chalk at the square. After this she counts the number M
of hits in the circle and the number N >= M of hits in
the square (including those in the circle), and demon-
strates that M/N is about PI/4. This is because PI/4 is
the area of the inscribed circle divided by the area of
the square, and the probability of hitting any small
part of the square is roughly identical to hitting any
other small part of the square.

You have been asked to simulate the demonstration in the
computer. The square is to be simulated by the unit
square in the XY-plane, [0,1]x[0,1], which has (0,0) as
its lower left corner and (1,1) as its upper right
corner. To simulate throwing the chalk, two random
integers X and Y are ‘drawn uniformly’ (see below for
details) from the range 0 .. S-1, where S > 0 is some
integer. Then the coordinates where the chalk strikes
are set at ((X + 0.5)/S, (Y + 0.5)/S). These are
inside the square, so all our ‘throws’ count toward N.
They are inside the circle, and count toward M, if and
only if the chalk strikes at a distance of 0.5 or less
from the center of the circle, (0.5, 0.5).

Thus if S = 100 and the first two random integers drawn
are 37 and 69, the chalk point is (0.375,0.695) which
is distance 0.23 from (0.5,0.5), and is therefore in the
circle and counts toward both M and N.

Drawing Random Numbers
------- ------ -------

You are asked to draw pseudo-random numbers according to
the equation:

 RANDOM = (RANDOM * MULTIPLIER) mod MODULUS

where RANDOM is the value of the pseudo-random number,
the equation steps from the the last pseudo-random
number to the next pseudo-random number, and MULTIPLIER
and MODULUS are fixed values that determine the pseudo-
random number sequence.

To get started, RANDOM is initialized to a value called
SEED. The first pseudo-random number in the sequence
is not SEED, but the first number after SEED in the
sequence.

If MULTIPLIER and MODULUS have good values for this
purpose, the resulting sequence of numbers appears when
tested to be truly random and uniformly distributed in
the range from 1 through MODULUS - 1. Uniformly dis-
tributed means all values in this range are equally
probable. The choices

 MULTIPLIER = 7**5 = 16807
 MODULUS = 2**31 - 1 = 2147483647

are very good for this purpose.

For example, if MULTIPLIER and MODULUS are as just
given, and the SEED is 374332679, then the first two
random numbers are 1429733890 and 1342962947.

A remaining difficulty is how to convert uniformly
distributed integers from 1 through MODULUS - 1 to
uniformly distributed integers from 0 through S-1. An
easy solution, which we will adopt, is to set

pseudopi.txt 10/19/05 07:20:22 2 of 3

 S = MODULUS - 1

and subtract 1 from each value of RANDOM. Thus ‘a chalk
throw’ is simulated by executing

 RANDOM = (MULTIPLIER * RANDOM) mod MODULUS
 X = RANDOM - 1
 X = (X + 0.5) / S
 RANDOM = (MULTIPLIER * RANDOM) mod MODULUS
 Y = RANDOM - 1
 Y = (Y + 0.5) / S

to yield (X,Y) in the unit square.

Implementation of the above algorithm requires integers
longer than 32 bits. In C or C++ you can use doubles
and the fmod function. Or you can use ‘long long’s and
the % operator. In JAVA you can use ‘long’s and the %
operator. Remember, ‘long’s are only 32 bits in C and
C++, but are 64 bits in JAVA. ‘long long’s are 64 bits
in C and C++.

Input

For each of several test cases, one line containing
four numbers in the order:

 N MULTIPLIER MODULUS SEED

The numbers may be separated by spaces or tabs. All
input numbers are positive integers below 2**31 (but
some products computed by intermediate computations will
be larger).

Input ends with an end of file.

The simulation is to be done with RANDOM initialized to
SEED (SEED is NOT the first pseudo-random number) and
S = MODULUS - 1.

Output

For each test case one line containing five numbers in
the order:

 N MULTIPLIER MODULUS SEED PI_ESTIMATE

where the first four numbers are copied from the input,
and PI_ESTIMATE equals 4*M/N expressed as a decimal
number with exactly 5 decimal places.

Example Input
------- -----

100 16807 2147483647 374332679
1000 16807 2147483647 374332679
10000 16807 2147483647 374332679
100000 16807 2147483647 374332679
1000000 16807 2147483647 374332679

Example Output
------- ------

100 16807 2147483647 374332679 3.20000
1000 16807 2147483647 374332679 3.13600
10000 16807 2147483647 374332679 3.15960
100000 16807 2147483647 374332679 3.13888
1000000 16807 2147483647 374332679 3.14167

pseudopi.txt 10/19/05 07:20:22 3 of 3

File: pseudopi.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Wed Oct 19 07:19:20 EDT 2005

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2005/10/24 07:36:22 $
 $RCSfile: problems-bospre2005.ps,v $
 $Revision: 1.1 $

faireye.txt 10/18/05 11:30:23 1 of 2
Fair Eye’s Secret

Fair Eye, the referee, is known for making correct
calls. Scooper, the news reporter, thinks he has figured
out the secret of Fair Eye’s success. Just before
making a call, Fair Eye carefully positions himself
at an equal distance from any place where an event that
needs to be called may occur.

To test his theory Scooper uses Sky Cam to measure the
location F of Fair Eye and the locations P1, P2, P3 of
places where events that may need to be called occur.
For some reason there are almost always three such
places, and Scooper ignores the cases where there are
not three. To test his theory Scooper wants to compute
for every three places P1, P2, and P3 the exact location
of the point C equidistant from these three places, so
that C may be compared to F, where Fair Eye positions
himself.

Mathematicians call C the circumcenter of P1, P2, and
P3, or of the triangle whose vertices are P1, P2, and
P3. It is the center of the circumscribed circle of
that triangle.

Input

For each case, a single line containing the 6 numbers

 x1 y1 x2 y2 x3 y3

defining three points: P1 = (x1,y1), P2 = (x2,y2), and
P3 = (x3,y3). The 6 numbers are real numbers (and may
be negative).

An end of file terminates the input.

Output

For each case, a single line containing the 2 numbers

 x y

defining the circumcenter C = (x,y) of the three points
P1, P2, P3.

Both x and y must be printed with exactly 3 decimal
places.

You may assume that double precision floating point
numbers will suffice to compute C with adequate
precision, and that the three points are not so close
to being co-linear that there will be computation
problems.

Example Input
------- -----

0.0 0.0 1.0 0.0 0.0 1.0
0.0 0.0 1.0 1.0 0.0 1.0
0.0 0.0 1.0 2.0 2.0 0.0

Example Output
------- ------

0.500 0.500
0.500 0.500
1.000 0.750

faireye.txt 10/18/05 11:30:23 2 of 2

File: faireye.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Tue Oct 18 11:29:13 EDT 2005

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2005/10/24 07:36:22 $
 $RCSfile: problems-bospre2005.ps,v $
 $Revision: 1.1 $

overlapgame.txt 10/19/05 07:26:51 1 of 2
The Overlap Game

The Overlap Game is played with a set of words that are
used to create a string of letters. The first player
picks a word from the set and puts it on the board,
creating the string. Thereafter each player picks a
word and puts it at the end of the string, BUT, the
beginning of the word must overlap the end of the string
by one or more letters. The word is placed so its over-
lapping letters actually overlap those at the end of the
string. Each move must increase the number of letters
on the board.

Thus if a game starts with the words

 THE EATEN ENCHANTMENT

the first move could result in

 THE

the second move could result in

 THEATEN

and the third move could result in

 THEATENCHANTMENT

However, a second move resulting in

 THENCHANTMENT

is also possible, and then there could be no third move.

There are only two players in this game, and the person
to move last loses. Play stops only when no more words
can be added to the string.

You have been asked to assist a player by determining
winning moves.

Input

For each case, a list of words followed by the mark ‘*’.
The words and marks are separated by whitespace, where
any combination of spaces, tabs, and line ends are
considered to be whitespace.

All words consist of just upper case letters. There are
at most 100 words in a case, and each word is at most
20 letters.

An end of file terminates the input.

Output

For each case, a single line containing just the (upper
case) words the first player can play first to force a
win. The words are separated by spaces.

If there are no words that will result in a win, the
single line should instead contain just lower case
‘lose’. This indicates the first player must lose if
the second player plays optimally.

overlapgame.txt 10/19/05 07:26:51 2 of 2

Example Input
------- -----

THE EATEN ENCHANTMENT *
THE EATEN ENCHANTMENT ENTICES *
THIS HISTORY IS YIPPING SILLY *
AB BC CD DE EA *
HISTORY YES SENSIBLE YEOWL ELOQUE LONG *
THE ENVELOP OPERATES TESTING GREAT
 EATERIES POST *

Example Output
------- ------

lose
EATEN ENCHANTMENT
HISTORY SILLY
lose
SENSIBLE YEOWL
THE ENVELOP OPERATES

File: overlapgame.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Wed Oct 19 07:24:25 EDT 2005

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2005/10/24 07:36:22 $
 $RCSfile: problems-bospre2005.ps,v $
 $Revision: 1.1 $

chromatic.txt 10/17/05 03:06:04 1 of 2
Chromatic Polynomials
--------- -----------

Given an undirected graph G (a set of vertices and
edges) let P(G,n) be the number of ways to color G with
n colors so no adjacent vertices have the same color.

If e is an edge of G between vertices x and y, then

 P(G,n) = number of ways to color G such that no 2
 adjacent vertices OTHER THAN x or y have
 the same color

 - number of ways to color G such that no 2
 adjacent vertices OTHER THAN x or y have
 the same color, AND x and y do have the
 same color

 = P(G’,n) - P(G’’,n)

where G’ is the graph made from G by deleting edge e,
and G’’ is the graph made from G by merging x and y,
deleting e, and deleting any duplicates of edges in
the resulting graph. That is, if in G e1 is an edge
from x to z and e2 is an edge from y to z then in G’’
x and y become the same vertex so e1 and e2 are now the
same edge and one of these must be deleted to avoid
duplicate edges.

G’ and G’’ both have fewer edges than G. By repeating
this process you can reduce the problem to computing
the number of ways of coloring a graph with no edges
with n colors. This is just n**d, where d is the number
of vertices in the graph with no edges.

Therefore P(G,n) is a polynomial in n of degree |G|,
where |G| is the number of vertices in G. You are asked
to compute P(G,n) for various G.

Input

For each of several test cases, a specification of a
graph G as follows:

 A line containing the number V of vertices.
 1 <= V <= 10.

 V lines each containing V binary digits
 (‘0’s and ‘1’s).

Vertices are identified by integers i, 1 <= i <= V.
Lines of digits are numbered 1, 2, 3, from the first
line to the last line. Digits in a line are numbered
1, 2, 3, from left to right.

For 1 <= i,j <= V, digit j of line i is ‘1’ if vertex
i is adjacent to vertex j, and ‘0’ otherwise. Digit
j of line i equals digit i of line j, and digit i of
line i is ‘0’ (a vertex is NOT adjacent to itself).

No lines contain any spaces. The input terminates
with an end of file.

Output

For each case, a single line containing V+1 integers,
which are the coefficients of P(G,n) from high order
to low order.

chromatic.txt 10/17/05 03:06:04 2 of 2

Example Input
------- -----

3
000
000
000
3
011
101
110
5
01000
10100
01010
00101
00010
5
01001
10100
01010
00101
10010

Example Output
------- ------

1 0 0 0
1 -3 2 0
1 -4 6 -4 1 0
1 -5 10 -10 4 0

File: chromatic.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Mon Oct 17 03:05:49 EDT 2005

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2005/10/24 07:36:22 $
 $RCSfile: problems-bospre2005.ps,v $
 $Revision: 1.1 $

prooflabel.txt 10/18/05 11:38:43 1 of 5
Proof Labeling

The following is an example of a proof in a limited
logic language with just the implication operator =>
and propositional variables denoted by single upper
case letters.

z ((A=>B)=>B) assumption
y (B=>A) assumption
x (A=>B) assumption
1 B modus ponens z x
2 A modus ponens y 1
3 ((A=>B)=>A) discharge x 2
a (((A=>B)=>A)=>A) axiom
4 A modus ponens a 3
5 ((B=>A)=>A) discharge y 4
6 (((A=>B)=>B)=>((B=>A)=>A)) discharge z 5

Here each line is an inference. Inferences are named by
lower case letters or integers. After the name comes
the logical formula. After that, the reason the formula
is a valid inference (e.g., ‘axiom’ or ‘discharge z 5’).

Assumptions and axioms are named by lower case letters,
while other inferences are named by integers. Different
inferences have distinct names.

A logical formula is either an atom, denoted by a single
upper case letter, or an implication, which has the
form (F1=>F2), where F1 and F2 are any logical formulae.

There are four kinds of inferences.

Axioms. These are just named with a lower case letter.
The only axiom needed by our limited logic language is
Pierce’s axiom, which is any formula of the form
(((F1=>F2)=>F1)=>F1). (F1=>F2) is used as a stand-in
for ‘not F1’, since negation is not in our limited
language, so Pierce’s axiom just says that if you can
prove F1 from ‘not F1’, then F1 is true.

Assumptions. These are named by a lower case letter.
They must be discharged. Avoiding the use of
undischarged assumptions in a proof is a subtle point
that will be elaborated on in the notes below.

Modus Ponens. This is the rule of logic that says given
(F1=>F2) and F1 you can infer F2. A modus ponens infer-
ence is named by an integer. Let F2 be the logical
formula of the inference. Then the reason of the infer-
ence must have the form ‘modus ponens N1 N2’ where N1
names a previous inference whose logical formula has the
form (F1=>F2) for some logical formula F1, and N2 names
a previous inference whose logical formula is F1.

Discharge. This is how you discharge assumptions. A
discharge inference has an integer name and a logical
formula of the form (F1=>F2). Its reason has the form
‘discharge N1 N2’ where N1 names a previous inference
that is an assumption with logical formula F1, and N2
names a previous inference with logical formula F2.

prooflabel.txt 10/18/05 11:38:43 2 of 5

Inferences in a proof can be given labels that
completely describe how the inference was arrived at.
When labels are added on a line after each inference in
the above example, the example looks like this:

z ((A=>B)=>B) assumption
 z
y (B=>A) assumption
 y
x (A=>B) assumption
 x
1 B modus ponens z x
 (zx)
2 A modus ponens y 1
 (y(zx))
3 ((A=>B)=>A) discharge x 2
 (\x.(y(zx)))
a (((A=>B)=>A)=>A) axiom
 a
4 A modus ponens a 3
 (a(\x.(y(zx))))
5 ((B=>A)=>A) discharge y 4
 (\y.(a(\x.(y(zx)))))
6 (((A=>B)=>B)=>((B=>A)=>A)) discharge z 5
 (\z.(\y.(a(\x.(y(zx))))))

Note that inference names and inference labels are
different things, though for assumptions and axioms they
happen to be equal. Labels are computed as follows:

Axiom. The label of an axiom inference is the name of
the inference, a lower case letter.

Assumption. The label of an assumption inference is the
name of the inference, a lower case letter.

Modus Ponens. The label of a ‘modus ponens N1 N2’
inference is (XY) where X is the label of inference N1
and Y is the label of inference N2.

Discharge. The label of a ‘discharge N1 N2’ inference
is (\X.Y) where X is the label of the inference N1, and
is always a lower case letter, as N1 is an assumption,
while Y is the label of the inference N2.

We have told you everything you need to know to do this
problem, but there is more interesting stuff in the
notes at the end.

Input

A sequence of inferences, one per line, without any
labels. Each inference consists of a name, a logical
formula, and a reason. There are no spaces inside the
logical formula. Any amount of whitespace may be used
to separate the name, the logical formula, the reason,
and the separate parts of the reason.

An end of file terminates the input.

No two inferences have the same name. Names are all
lower case letters or integers in the range from 1
through 1000. No inference line is longer than 80
characters.

Output

For each inference print the exact input line containing
the inference followed by one additional line containing
the label of the inference indented by 4 spaces. The
label must not contain spaces.

prooflabel.txt 10/18/05 11:38:43 3 of 5

However, you must perform checks on modus ponens and
discharge inferences. If the checks do not pass, you
must output ‘$’ as the label of the inference. This
label may then propagate into the labels of other
inferences that use the inference which did not check.

The check for a ‘modus ponens N1 N2’ inference with
logical formula F2 is that inference N1 has a logical
formula of the form (F1=>F2) and inference N2 has the
logical formula F1.

The check for a ‘discharge N1 N2’ inference is that
it has a logical formula of the form (F1=>F2),
inference N1 is an assumption (check this) with
logical formula F1, and inference N2 has logical
formula F2.

The input data will be such that no label will be longer
than 76 characters (so no output line will be longer
than 80 characters). The N1 and N2 above will always
name previous inferences (though not necessarily those
that will pass the checks for formula or reason).

Example Input
------- -----

z ((A=>B)=>C) assumption
y ((B=>A)=>C) assumption
x (C=>B) assumption
w (B=>A) assumption
1 C modus ponens y w
2 B modus ponens x 1
3 ((B=>A)=>B) discharge w 2
a (((B=>A)=>B)=>B) axiom
4 B modus ponens a 3
v A assumption
5 (A=>B) discharge v 4
6 C modus ponens z 5
7 ((C=>B)=>C) discharge x 6
b (((C=>B)=>C)=>C) axiom
8 C modus ponens b 7
9 (((B=>A)=>C)=>C) discharge y 8
10 (((A=>B)=>C)=>(((B=>A)=>C)=>C)) discharge z 9
11 (A=>A) discharge v v
12 C modus ponens v 11
13 B modus ponens x 12
14 (A=>B) discharge v 13
15 ((((B=>A)=>B)=>B)=>B) discharge a 13

Example Output
------- ------

z ((A=>B)=>C) assumption
 z
y ((B=>A)=>C) assumption
 y
x (C=>B) assumption
 x
w (B=>A) assumption
 w

prooflabel.txt 10/18/05 11:38:43 4 of 5

1 C modus ponens y w
 (yw)
2 B modus ponens x 1
 (x(yw))
3 ((B=>A)=>B) discharge w 2
 (\w.(x(yw)))
a (((B=>A)=>B)=>B) axiom
 a
4 B modus ponens a 3
 (a(\w.(x(yw))))
v A assumption
 v
5 (A=>B) discharge v 4
 (\v.(a(\w.(x(yw)))))
6 C modus ponens z 5
 (z(\v.(a(\w.(x(yw))))))
7 ((C=>B)=>C) discharge x 6
 (\x.(z(\v.(a(\w.(x(yw)))))))
b (((C=>B)=>C)=>C) axiom
 b
8 C modus ponens b 7
 (b(\x.(z(\v.(a(\w.(x(yw))))))))
9 (((B=>A)=>C)=>C) discharge y 8
 (\y.(b(\x.(z(\v.(a(\w.(x(yw)))))))))
10 (((A=>B)=>C)=>(((B=>A)=>C)=>C)) discharge z 9
 (\z.(\y.(b(\x.(z(\v.(a(\w.(x(yw))))))))))
11 (A=>A) discharge v v
 (\v.v)
12 C modus ponens v 11
 $
13 B modus ponens x 12
 (x$)
14 (A=>B) discharge v 13
 (\v.(x$))
15 ((((B=>A)=>B)=>B)=>B) discharge a 13
 $

Notes

An assumption name X is discharged in a label if it only
occurs inside subexpressions of the label that have the
form (\X...). That is, the \X discharges all X’s in
the subexpression it begins.

Thus z is discharged in (a(\z.(xz))) but is not
discharged in (z(\z.(xz))) as in the latter the first
z is outside any (\z...)

In a valid proof of a theorem, all assumptions must be
discharged. Notice we did NOT ask you to check this.

It is possible to prove the following:

If a formula F has a proof with label ((\X.Y)Z) then
it has a proof with label Y[X=Z], which denotes the
label Y with all undischarged X’s in it replaced by Z,
provided that Z has no undischarged assumption names
that become discharged when Z is inserted into Y.
Thus the label of a proof can be ‘reduced’ by the
‘reduction rule’ ((\X.Y)Z) --> Y[X=Z].

Inference labels as we have introduced them have exactly
the same syntax as formula’s in lambda calculus, where
we have used the backslash \ in place of the Greek
letter ‘lambda’. Furthermore, the reduction rule we
have just introduced for inference labels is exactly the
main reduction rule for the lambda calculus, beta reduc-
tion, and our word ‘discharged’ corresponds exactly to
the lambda calculus word ‘bound’.

It can also be shown that the other reduction rules for
the lambda calculus, alpha reduction and eta reduction,
are valid for inference labels. Thus there is an exact
1-1 correspondence between inference labels and lambda
calculus. This is called the Curry-Howard Isomorphism.

prooflabel.txt 10/18/05 11:38:43 5 of 5

It further turns out that the relation between the
logical formula of an inference and the label of the
inference is exactly the same as the relation between
the type of a lambda calculus formula and the formula.
Thus logical formula can be read as the types of the
labels of their proofs.

File: prooflabel.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Tue Oct 18 11:33:00 EDT 2005

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: walton $
 $Date: 2005/10/24 07:36:22 $
 $RCSfile: problems-bospre2005.ps,v $
 $Revision: 1.1 $

