
problems 10/19/03 08:53:11 1 of 1
Problems Index Sun Oct 19 08:53:11 EDT 2003

Problems for BOSPRE 2003.

Easier Problems are First.

 problems/puredie
 Making dice live up to expectations.

 problems/changeview
 A computational view of the world.

 problems/convoy
 Traffic accordions.

 problems/monotonic
 Solving some equations is easy.

 problems/coloring
 Turning adult’s work to child’s play.

 problems/whichcoin
 Best strategy to solve a conundrum.

 problems/features
 Do we think with labeled graphs?

puredie.txt 10/18/03 22:07:56 1 of 2
Pure Dice
---- ----

Olvk is very concerned by bias on dice, and wants to
make an unbiased 6-sided dice. He does this by taking
an N sided dice and throwing it 3 times. If the 3
values thrown are different, they can come out in one of
6 orderings, and each ordering has the same probability.
By assigning a number from 1 through 6 to each of the 6
orderings, Olvk effectively has an unbiased 6-sided
dice.

For example, if S represents the smallest of three
different values, M the middle value, and L the largest
value, then the 6 orderings might be assigned values by

 SML 1
 SLM 2
 MSL 3
 MLS 4
 LSM 5
 LMS 6

One problem is that the three values may not all be
different: if N were 6, one might throw 115 or even 111.
In this case Olvk choses to ignore the three values he
just threw, and throw 3 more times. If we call a set of
3 throws a ‘round’, Olvk keeps throwing rounds until he
gets 3 different values. Olvk must throw M rounds to
get an 1 unbiased throw if the first M-1 rounds each
have 2 or 3 equal values and the M’th round does not.

You are asked to compute the probability that Olvk will
need exactly M rounds to get 1 unbiased value, given N
and the probabilities that each of the N faces of the
biased dice will be thrown.

Input

For each case, 1 line containing

 M N p1 p2 ... pN

where M and N are as above and p1, p2, ..., pN are the N
probabilities that each of the N faces of the biased die
will be thrown. 1 <= M <= 100. 4 <= N <= 20.
0.0 <= pI <= 1.0, for I from 1 through N. The sum of
the pI’s is 1.0.

Input ends with an end of file.

Output

One line per case containing the probability that it
will take Olvk exactly M rounds to get his first un-
biased value. This probability must have exactly 6
decimal places.

Example Input
------- -----

1 4 0.2 0.2 0.2 0.4
3 4 0.2 0.2 0.2 0.4

Example Output
------- ------

0.336000
0.148141

puredie.txt 10/18/03 22:07:56 2 of 2

File: puredie.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Sat Oct 18 22:07:29 EDT 2003

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: hc3-judge $
 $Date: 2003/10/26 11:54:47 $
 $RCSfile: bospre-2003-problems.ps,v $
 $Revision: 1.2 $

changeview.txt 10/18/03 08:25:55 1 of 2
Changing Point of View
-------- ----- -- ----

TeffalHead FatBody has stayed out too late on the planet
BadTrash and is in danger of being consumed by a Larger
BageGarLectorCol. To get to safety TeffalHead must get
to base A or base B or the ZoomTube that connects them.
He knows his own position, C, and the ZoomTube is a
perfectly straight line between A and B (woe betide a
zoomer in a curved ZoomTube). TeffalHead needs to know
immediately which he is closest to, A, B, or some point
on the ZoomTube between A and B.

TeffalHead knows the xy-coordinates of points A, B, and
C. Like any good robotminded soul, he expects to trans-
late and rotate the xy-coordinate system to make a new
x’y’-coordinate system in which A has x’y’-coordinates
(0,0) and B has x’y’-coordinates (L,0), where L is the
distance from A to B. Then the answer can be easily
read from the x’ coordinate of C.

Unfortunately, living up to his first name, which means
‘forgetful in emergencies’, TeffalHead has forgotten the
program that finds the x’y’-coordinate system. He as
put out a call for help, and as the only emergency prog-
grammer within range, you must send him a program tout
de suite.

Note you are permitted to translate and rotate the
xy-coordinates, but NOT to reflect across a coordinate
axis. Unnecessary reflections are a terrible breech
of robot etiquette. Thus the y’ coordinate of C is
unambiguous.

Input

For each of several cases, one line, containing

 Ax Ay Bx By Cx Cy

where the xy-coordinates of points A, B, and C are re-
spectively (Ax,Ay), (Bx,By), and (Cx,Cy). Input ends
with an end of file.

Output

For each case one line containing:

 (Cx’,Cy’) L ANS

where (Cx’,Cy’) are the x’y’-coordinates of C, L is
the length of AB, and ANS is one of the following:

 A If TeffalHead is closest to A.

 B If TeffalHead is closest to B.

 ZoomTube If TeffalHead is closest to a
 point on the ZoomTube between
 A and B.

The x’y’-coordinates and L must be accurate to plus or
minus 0.001.

Example Input
------- -----

0 0 1 0 0.5 -6
5.0 3.0 5.5 2.5 5.0 4.0
5.0 3.0 5.5 2.5 5.0 1.0

changeview.txt 10/18/03 08:25:55 2 of 2

Example Output
------- ------

(0.500,-6.000) 1.000 ZoomTube
(-0.707,0.707) 0.707 A
(1.414,-1.414) 0.707 B

File: changeview.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Sat Oct 18 08:24:10 EDT 2003

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: hc3-judge $
 $Date: 2003/10/26 11:54:47 $
 $RCSfile: bospre-2003-problems.ps,v $
 $Revision: 1.2 $

convoy.txt 10/18/03 08:58:04 1 of 3
Convoy

The Safe and Speedy Driver Company makes robot drivers.
They have been asked to provide drivers for convoys of
trucks, but are unsure if their basic traveling algor-
ithm will work. You have been asked to simulate it,
so see under what circumstances it will cause crashes.

The simulation is of N trucks traveling from right to
left. In the beginning, all trucks are separated by
exactly L0 feet and are traveling a velocity V0 ft/s.
The simulation lasts for some number of seconds.

Each driver decides at the beginning of each second
whether to accelerate during the second, decelerate
(brake) during the second, or maintain velocity during
the second. All acceleration is by A0 ft/s/s. All
deceleration is by -A0 ft/s/s unless the current truck
velocity V ft/s is less than A0, in which case the de-
celeration is by -V ft/s/s so the truck velocity will be
0 at the end of the second. Maintaining velocity, of
course, involves an acceleration of 0 ft/s/s during the
second.

During each second, the acceleration in ft/s/s of each
truck is constant, the velocity of the truck is a linear
function of time, and the distance traveled by the truck
is a quadratic function of time.

The algorithm each driver of a non-lead truck follows
to determine the truck’s acceleration at the beginning
of a second is:

 if the truck is approaching the truck it is follow-
 ing at a relative velocity of at least dV ft/s, then
 decelerate

 else if the truck is receding from the truck it is
 following at a relative velocity of at least
 dV ft/s, then accelerate

 else if the truck is at least L0+dL ft from the
 truck it is following, accelerate

 else if the truck is at at most L0-dL ft from the
 truck it is following, decelerate

 else maintain speed

The lead truck receives instructions that tell its
driver what to do for each second.

convoy.txt 10/18/03 08:58:04 2 of 3

Input

For each of several cases,

 One line containing the numbers

 N L0 dL V0 dV A0

 One line containing the instructions for the lead
 driver.

The instructions are a sequence of +, 0, and - charac-
ters, one character per second. Each is interpreted as
an instruction for the lead driver to

 + accelerate
 0 maintain speed
 - decelerate

for one second. The leftmost character is for the first
second, the rightmost for the last second, and the num-
ber of instruction characters is the number of seconds
in the simulation. There are no spaces in the instruc-
tions line.

Simulations are limited to at most 100 seconds and at
most 11 trucks. Input ends with an end of file.

Output

For each case

 One line containing just ‘Case #’, where # is the
 number of the case, 1, 2, 3, etc, and there is
 exactly one space in the line.

 Lines containing the distances between the non-lead
 trucks and the truck they are following. Each line
 contains N-1 distances, each in exactly 8 columns
 with exactly 3 decimal places. Each distance is the
 distance between a truck and the truck it is follow-
 ing. The distances are for the trucks from left to
 right: the first is for the truck after the lead
 truck.

 One line with the initial distances is printed,
 followed by one line for each second of simulation
 with the distances at the end of the second.

 If any output line has a negative distance, the
 simulation terminates, and a next line containing
 just ‘CRASH’ is output.

Example Input
------- -----

3 88 11 44 11 44

3 88 11 44 11 44
+++++0000---------------
5 88 11 44 11 44
+-----

convoy.txt 10/18/03 08:58:04 3 of 3

Example Output
------- ------

Case 1
 88.000 88.000
 66.000 88.000
 44.000 66.000
 44.000 44.000
 44.000 44.000
 44.000 44.000
Case 2
 88.000 88.000
 110.000 88.000
 154.000 110.000
 198.000 154.000
 242.000 198.000
 286.000 242.000
 308.000 286.000
 286.000 330.000
 264.000 330.000
 242.000 330.000
 198.000 330.000
 154.000 286.000
 110.000 242.000
 66.000 198.000
 22.000 154.000
 -22.000 110.000
CRASH
Case 3
 88.000 88.000 88.000 88.000
 110.000 88.000 88.000 88.000
 110.000 110.000 88.000 88.000
 66.000 110.000 110.000 88.000
 44.000 66.000 110.000 110.000
 44.000 44.000 66.000 110.000
 44.000 44.000 44.000 66.000

Postscript

Driving safety experts recommend drivers maintain a
at least 3 seconds separation between themselves and
the car in front of them in good weather.

File: convoy.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Sat Oct 18 08:56:00 EDT 2003

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: hc3-judge $
 $Date: 2003/10/26 11:54:47 $
 $RCSfile: bospre-2003-problems.ps,v $
 $Revision: 1.2 $

monotonic.txt 10/19/03 08:20:29 1 of 2
Solving Monotonic Functions
------- --------- ---------

The Department of Monotonic Functions (DMF) will, among
other things, solve equations of the form F(x) = 0,
where F is a strictly monotonic function. ‘F(x) is
strictly monotonic’ means that whenever x < y,
F(x) < F(y).

You are asked to write a program to perform this task
for fairly arbitrary F. F is input in polish notation.
That is, F(x) is calculated by a stack machine as
follows.

The stack machine has a stack of double precision
floating point numbers. Initially the stack is empty.

The function is a sequence of symbols and numbers. A
number means: push the number into the top of the stack.
All numbers begin with a digit: there are no signed
numbers. The following are the possible symbols and
their meanings:

 x push x into the stack

 + pop the top 2 members of the stack,
 and push their sum onto the stack

 - pop the top 2 members of the stack,
 and push the second value popped minus
 the first value popped onto the stack

 * pop the top 2 members of the stack,
 and push their product onto the stack

 / pop the top 2 members of the stack,
 and push onto the stack the second value
 popped divided by the first value
 popped

Thus ‘2.4 x * 1.2 x / -’ represents the monotonic func-
tion

 F(x) = 2.4 * x - 1.2 / x

Input:

 For each of several cases, one line containing

 L H TOKEN ... ;

 where [L,H] is the range of x values over which F(x)
 is monotonic and in which the solution is to be
 found, and ‘TOKEN ...’ is the sequence of symbols
 and numbers representing the function F. A TOKEN is
 just one symbol or number. L, H, TOKENs, and ; are
 all separated by spaces or tabs. There are at most
 80 TOKENs.

 It is guaranteed that F(L) < 0 < F(H) and that no
 value of x in the range [L,H] will cause the
 computation of F to overflow double precision
 floating point arithmetic.

 Input ends with an end of file.

Output:

 For each case, a single line containing nothing but
 the value of x such that F(x) = 0. The value of x
 must be accurate to within 10**-9.

monotonic.txt 10/19/03 08:20:29 2 of 2

Example Input:
------- -----

1E-9 1E+9 2.4 x * 1.2 x / - ;
1 1E+9 3 x x x * * * 6 x x * * - 4 x * + 10 - ;

Example Output:
------- ------

0.707106781
2.114827162

File: monotonic.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Sun Oct 19 08:17:38 EDT 2003

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: hc3-judge $
 $Date: 2003/10/26 11:54:47 $
 $RCSfile: bospre-2003-problems.ps,v $
 $Revision: 1.2 $

coloring.txt 10/18/03 08:28:06 1 of 2
Graph Coloring
----- --------

The classical graph coloring problem is just the follow-
ing: color the nodes of an undirected graph so that
neighbors do not have the same color, and a minimum
number of colors are used. This problem has many
applications, among which are allocating variables to
registers by a compiler. The compiler considers two
variables to be neighbors if they are needed in the
same block of code.

The graph coloring problem is very hard to solve (its
NP complete). But there is a problem that is easy to
solve that can lead to good enough, but not optimal,
graph coloring solutions. It is this: make a list of
the nodes of the graph so that each node has no more
than M-1 neighbors after it in the list. Then the graph
can be colored with M colors, which can be assigned from
the end of the list to the beginning. For each node, at
most M-1 neighbors have been assigned colors before the
node is, so with M colors the node can always be assign-
ed a color different from any of its neighbors.

You are asked to find the minimum M such that the list
can be made.

Input

 For each of several cases:

 A line containing the number N of nodes.
 1 <= N <= 80.

 N lines each containing N binary digits
 (‘0’s and ‘1’s).

 Nodes are identified by integers i, 1 <= i <= N.
 Lines of digits are numbered 1, 2, 3, from the first
 line to the last line. Digits in a line are numbered
 1, 2, 3, from left to right.

 For 1 <= i,j <= N, digit j of line i is ‘1’ if node
 i is a neighbor of node j, and ‘0’ otherwise. Digit
 j of line i equals digit i of line j, and digit i of
 line i is ‘0’ (a node is NOT a neighbor of itself).

 No lines contain any spaces. The input terminates
 with an end of file.

Output

 For each case, the single line containing M, the
 smallest integer for which the nodes of the graph can
 be put in a list such that at most M-1 neighbors of
 any node appear after the node in the list.

coloring.txt 10/18/03 08:28:06 2 of 2

Example Input
------- -----

4
0111
1011
1101
1110
4
0101
1010
0101
1010
5
01111
10000
10000
10000
10000

Example Output
------- ------

4
3
2

File: coloring.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Sat Oct 18 08:27:15 EDT 2003

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: hc3-judge $
 $Date: 2003/10/26 11:54:47 $
 $RCSfile: bospre-2003-problems.ps,v $
 $Revision: 1.2 $

whichcoin.txt 10/19/03 08:35:01 1 of 2
Which Coin is False
----- ---- -- -----

Consider the following problem. You are given N coins,
exactly 1 of which is false, in that its weight differs
from the others, though you do not know whether the
false coin is lighter or heavier than it should be. You
are also given 1 additional coin known to be true and a
scale. You are asked to make a series of weighings of
equal numbers of the coins and at the end tell which
coin is false. You are asked to minimize the number of
weighings required.

Professor Toowit Toowoo (TT to his friends) has come up
with the following strategy for solving this problem.
There are two cases: first, where you do not know
whether the false coin is lighter than or heavier than a
true coin, and second where you do know.

If you do know whether the false coin is lighter than or
heavier than a true coin, divide the N coins into three
almost equal groups, and weigh two of these that have
equal numbers of coins against each other. The result
will tell you which of the three groups the false coin
is in.

If on the other hand you do NOT know whether the false
coin is lighter than or heavier than a true coin, divide
the N coins into three groups two of which have the same
number J of coins, and weigh these two groups against
each other. If the scale balances, the false coin is in
the group not weighed.

Otherwise, move some number K of the coins originally on
the left scale to the right scale, replacing them by
coins not originally weighed, and remove K coins origin-
ally on the right scale, so they are not weighed. This
second weighing has three outcomes. If the scales now
balance, the false coin was removed from the right
scale. If the balance (which side is heavier) changes,
the false coin was moved from the left to the right
scale. If the balance remains the same, the false coin
was not moved from either scale. In the first two
cases, you now know whether the false coin is lighter
than or heavier than a true coin. In the last case,
you still do not know.

If N is 2, then you can use the 1 known true coin to
solve the problem with a single weighing, as a special
case.

Notice that the number of weighings necessary may depend
upon the actual results of the weighings. For example,
if N=5, the first step might be to weigh 2 coins against
2 coins, and in the best case the scale balances and the
false coin is known immediately to be the coin you did
not weigh. But in the worst case, where the scale is
unbalanced, you have to move 1 coin from one scale to
the other, and if the scale remains unbalanced, then
you have only narrowed it down to 2 coins and need a
third weighing.

We want to use TT’s strategy to minimize the number of
weighings required if every result turns out to be worst
case. Thus you are asked to find the minimum worst case
number of weighings needed to solve the problem using
TT’s strategy, for a given N, and to find the number J
to be used in the first weighing, and the number K to be
used in the second weighing should the first weighing
not balance.

whichcoin.txt 10/19/03 08:35:01 2 of 2

Input

One line for each test case. This line just contains N,
with 3 <= N <= 500. The input ends with an end of file.

Output

One line for each case. This line contains

 W J K

where W is the minimum worst case number of weighings
required using TT’s strategy to solve the problem for N
coins, when you do NOT know whether the false coin is
lighter or heavier than a true coin; J is the number of
coins on each scale in the first weighing; and K is the
number of coins moved in the second weighing if the
first weighing has an imbalance. If several values of J
give the same W, output only the minimum such J. If for
this J several values of K give the same W, output only
the minimum such K.

Example Input
------- -----

3
4
5
6
7
8
0

Example Output
------- ------

2 1 1
2 1 1
3 1 1
3 1 1
3 2 1
3 2 1

Note: This problem is derived from a problem stated in
‘Engaging Students with Theory’, by Shilov and Yi,
Communications of the ACM, Sept 2002, Vol. 45 No. 9,
p 98.

File: whichcoin.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Sun Oct 19 08:27:39 EDT 2003

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: hc3-judge $
 $Date: 2003/10/26 11:54:47 $
 $RCSfile: bospre-2003-problems.ps,v $
 $Revision: 1.2 $

features.txt 10/19/03 08:17:22 1 of 5
Feature Structures
------- ----------

Information can be encoded in ‘feature structures’,
which are rooted labeled graphs. To explain, a
feature structure is a set of graph nodes (points), a
set of directed edges between pairs of nodes (arrows),
and an assignment of labels (symbols of some kind) to
SOME of the nodes and ALL of the arrows. No node may
be the source of two arrows with the same label. One of
the nodes is distinguished as the root node, and all of
the nodes are reachable from the root by following the
directed edges (going only in the direction of the
arrows).

An example feature structure is

 CATEGORY HEAD
 * -----------> cat ------> noun ------> nominative
 \ \
 \ \ SUBCAT
 \ +------> empty-list
 \
 \ CONTENT INDEX PERSON
 +-------> ppro -----> ref ------> 3rd
 |\
 | \ NUMBER
 | +------> singular
 |
 | GENDER
 +---------> feminine

This is part of the dictionary entry for the word ‘she’
for a typical computer English parser. Feature struct-
ures seem to be the most natural way to describe lin-
guistic information and grammar rules, and because of
this, it is conceivable that the human mind uses some
analog of feature structures to parse sentences.

From now on we will use single upper case characters as
arrow labels, and single decimal digits as node labels.
Unlabeled nodes will be represented by ‘#’, and the root
node will be marked by ‘*’. With this in mind, consider
the feature structure

 A B E
 #* ---------> # ------>9 -----+
 \ ^ |
 \ C D | |
 +--------> 4 -------+ |
 ^ |
 | |
 +---------------+

A path from the root to a node N in feature structure is
a list of edges starting at the root and going to N,
where the target of one edge is the source of the next
edge. A path can be named by giving the edge labels in
sequence, which we do separated by dots, with an initial
dot added to make it easy to distinguish the empty path
that names the root. A path is said to name the target
of its last edge. Thus in the above example, ‘.’ names
the root node, ‘.A’ names the other unlabeled node, and
‘.A.B’ and ‘.C.D’ name the node with value ‘9’. Actual-
ly this node has an infinite number of names, including
‘.A.B.E.D’ and ‘.C.D.E.D.E.D’.

features.txt 10/19/03 08:17:22 2 of 5

A feature structure can be described by a set of equa-
tions. Let P, P1, P2 be a path names, and V be a node
value. Then the equations have one of three forms:

 P
 P:V
 P1=P2

The equation P means a node named P exists. The equa-
tion P:V means a node named P exists and is labeled with
the value V (we will say the node ‘has value V’). The
equation P1=P2 means there exists a node that has both
the name P1 and the name P2.

Our example feature structure can be described by the
equations

 .A.B:9
 .C:4
 .C.D=.A.B
 .C.D.E=.C

These are not the only equations true for the this
feature structure, but the example feature structure is
the smallest feature structure that satisfies these
equations, in a sense we will now make precise.

As feature structures store information, we might expect
them to have a notion of one feature structure having
more information than another. If F1 and F2 are feature
structures, we say ‘F1 <= F2’ (here <= means ‘is greater
than’, or ‘has more information than’) if and only if
every equation true of F1 is also true of F2. Thus F1
is more general than F2, and F2 is more specific than
F1. The technical term for this is that ‘F1 subsumes
F2’, where ‘subsumes’ just means ‘is more general than’.

What does ‘F1 <= F2’ mean in terms of rooted directed
labeled graphs. It means (1) for every node in F1 named
by some path P, there is a node in F2 with name P; (2)
for every node in F1 named by some path P that has value
V, the node in F2 named by P also has value V; and (3)
if some node in F1 has both names P1 and P2, then the
node named P1 in F2 also has name P2. As a consequence
of all this there is a map of nodes of F1 to nodes of F2
such that (1) a node named P in F1 is mapped to a node
named P in F2, and (2) if a node in F1 has value V, the
node it is mapped to in F2 also has value V.

The property of feature structures that makes them ex-
tremely useful in computing is that certain computations
of feature structures have a minimum answer: that is, a
feature structure can be computed that is smaller than
any other suitable feature structure.

One instance of this is the following: given a set of
equations, either there is no feature structure satisfy-
ing all the equations, or there is exactly one minimum
feature structure satisfying all the equations. If
there is no feature structure satisfying the equations,
then the equations are said to be incompatible. For
example, the equations

 .A:1
 .A.B=.A
 .A.B:2

are incompatible, because they imply there is a node
with both the names .A and .A.B, which is fine, but also
this node has both values 1 and 2, which is not allowed:
no node may have more than one label.

features.txt 10/19/03 08:17:22 3 of 5

Two feature structures F1 and F2 are said to be compa-
tible if and only if there is some feature structure F
such that F1 <= F and F2 <= F. Then there is a minimum
F, which is just the minimum F satisfying all the equa-
tions of F1 and all the equations of F2. This is very
useful, because if a computer knows that F1 and F2 are
true, it does not have to keep both F1 and F2 around:
instead it can compute the minimum F and keep that for
future computations. This greatly improves the effi-
ciency of the computation, and is the reason that
feature structures are a good way for a computer to
represent information.

To compute the minimum feature structure satisfying a
set of equations, proceed to add one equation at a time.
Start with the feature structure F equal to ‘*#’, which
is just an unlabeled root node. Given a new equation P,
just add nodes and arrows as necessary to F until a node
named P exists. Any nodes added have no value. Given a
new equation P:V, make a node named P if none exists,
and then give that node the value V. If a node named P
already exists and already has a value DIFFERENT from V,
the equations are incompatible. Given a new equation
P1=P2, make nodes named P1 and P2 if necessary, and then
merge them to make a single node. Merging nodes means
gluing them together so that they are the same node. If
you must merge nodes that have DIFFERENT values, the
equations are incompatible. Computationally N1 and N2
can be merged by storing in N1 a forwarding pointer to
N2; this forwarding pointer behaves like a forwarding
address in a mail system.

When you merge nodes N1 and N2, you keep all the arrows
from BOTH nodes, BUT if

 X X
 if N1--->N1’ and N2--->N2’

you must merge N1’ and N2’.

That is, if two nodes being merged are BOTH sources for
an arrow labeled X, you keep just one of the arrows but
you merge the destinations of the arrows. So merging is
a recursive operation.

In this problem you are given sets of equations and are
asked to compute for each set the minimum feature struc-
ture described and answer questions about it.

Input

For each of several cases,

 A line containing only ‘EQUATIONS’.
 Zero or more lines each containing an equation. All
 these equations together describe a minimum
 feature structure.
 A line containing only ‘QUESTIONS’.
 Zero or more lines each containing an equation to be
 tested against the minimum feature structure.
 A line containing only ‘DONE’.

There are no spaces in any input line. The equations
are as described above. No equation is more than 80
characters long. Input ends with an end of file.

features.txt 10/19/03 08:17:22 4 of 5

Output

For each case,

 A line containing ‘Case #’ where # is 1, 2, 3, ...,
 the case number.

 If the EQUATIONS are incompatible, a single line
 containing ‘INCOMPATIBLE’.

 Otherwise, for each QUESTION in order, a single line
 containing either ‘TRUE’ or ‘FALSE’, that tells
 whether the QUESTION is true of the minimal feature
 structure that satisfies the EQUATIONS.

Example Input
------- -----

EQUATIONS
.A
.B
.B:6
QUESTIONS
.A
.B
.C
.A:3
.B:6
DONE
EQUATIONS
.A.B:9
.C:4
.C.D=.A.B
.C.D.E=.C
QUESTIONS
.A:3
.A
.C.D:8
.C.D.E.D:9
.A.B.E.D=.C
.A.B.E=.C
.A.B.E:4
.A.B.E:9
.A.E
DONE
EQUATIONS
.A:1
.A.B:2
.A.B=.A
QUESTIONS
DONE

features.txt 10/19/03 08:17:22 5 of 5

Example Output
------- ------

Case 1:
TRUE
TRUE
FALSE
FALSE
TRUE
Case 2:
FALSE
TRUE
FALSE
TRUE
FALSE
TRUE
TRUE
FALSE
FALSE
Case 3:
INCOMPATIBLE

Reference

Bob Carpenter, The Logic of Typed Feature Structures,
Cambridge University Press, 1992.

File: features.txt
Author: Bob Walton <walton@deas.harvard.edu>
Date: Sun Oct 19 08:16:33 EDT 2003

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.

RCS Info (may not be true date or author):

 $Author: hc3-judge $
 $Date: 2003/10/26 11:54:47 $
 $RCSfile: bospre-2003-problems.ps,v $
 $Revision: 1.2 $

